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Complexity notions for theories

The complexity of a first-order theory can be measured in various ways.

• Quantifier complexity of axiomatization
• Turing degree
• Classification theory

• Complexity of the isomorphism relation
• Borel reducibility
• Scott analysis

• Borel complexity of the set of models
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Scott analysis of models of
arithmetic



Setup — Vaught topology

Given a countable relational vocabulary 𝜏, the set of countable 𝜏-structures with universe 𝜔
admits a canonical Polish topology — the Vaught topology.

Fix an enumeration 𝜑𝑖(𝑥0, … , 𝑥𝑖) of the atomic 𝜏-formulas and let the atomic diagram of a
𝜏-structure 𝒜 with universe 𝜔 be

𝐷(𝒜)(𝑖) = {
1 𝜑𝑖[𝑥0 … 𝑥𝑖 ↦ 0 … 𝑖]𝒜

0 otherwise

We get an homeomorphism 𝑀𝑜𝑑(𝜏) → 2𝜔 and can define the Borel hierarchy as usual:

For countable 𝛼, and 𝑋 ⊆ 𝑀𝑜𝑑(𝜏)

𝑋 ∈ ΣΣΣ0
1 ⟺ 𝑋 open 𝑋 ∈ ΠΠΠ0

1 ⟺ 𝑋 closed

𝑋 ∈ ΣΣΣ0
𝛼 ⟺ 𝑋 = ⋃ 𝑋𝑖 , 𝑋𝑖 ∈ ΠΠΠ0

<𝛼

𝑋 ∈ ΠΠΠ0
𝛼 ⟺ 𝑋 = ⋂ 𝑋𝑖 , 𝑋𝑖 ∈ ΣΣΣ0

<𝛼

For every 𝐿𝜔1𝜔 formula 𝜑 there is 𝛼 < 𝜔1 and 𝜓 ∈ Σin
𝛼 such that 𝜑 ≡ 𝜓.
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Setup — Infinitary logic

𝐿𝜔1𝜔 is similar to first-order logic except it allows countable conjunctions and disjunctions.

For 𝜑 ∈ 𝐿𝜔1𝜔 and 𝛼 countable

𝜑 ∈ Σin
0 = Πin

0 ⟺ 𝜑 finite and quantifier-free

𝜑 ∈ Σin
𝛼 ⟺ 𝜑 = ⋁⋁ ∃ ̄𝑥𝑖𝜑𝑖 , 𝜑𝑖 ∈ Πin

<𝛼

𝜑 ∈ Πin
𝛼 ⟺ 𝜑 = ⋀⋀ ∀ ̄𝑥𝑖𝜑𝑖 , 𝜑𝑖 ∈ Σin

<𝛼

The asymmetric back-and-forth ≤𝛼 relations are defined as

(𝒜, 𝑎) ≤1 (ℬ, 𝑏) ⟺ Π1-tp
𝒜(𝑎) ⊆ Π1-tp

ℬ(𝑏)
(𝒜, 𝑎) ≤𝛼 (ℬ, 𝑏) ⟺ (∀𝛽 < 𝛼)∀𝑐∃𝑑 (ℬ, 𝑏𝑐) ≤𝛽 (𝒜, 𝑎𝑑)

Theorem (Karp 1965) (𝐴, 𝑎) ≤𝛼 (ℬ, 𝑏) if and only if Πin
𝛼 -tp

𝒜(𝑎) ⊆ Πin
𝛼 -tp

ℬ(𝑏).
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Setup — Scott analysis

Theorem (Scott 1964)
For every countable structure 𝒜 there is an 𝐿𝜔1𝜔-sentence 𝜑—the Scott sentence of 𝒜—such
that for any countable ℬ, ℬ ⊧ 𝜑 if and only if ℬ ≅ 𝒜.

Theorem (Montalbán 2015)
The following are equivalent for all 𝛼 < 𝜔 and countable 𝒜:

1. The isomorphism class of 𝒜 is Πin
𝛼+1 .

2. There is a Πin
𝛼+1 Scott sentence for 𝒜.

3. The structure 𝒜 is uniformlyΔΔΔ0
𝛼-categorical.

4. All automorphism orbits in 𝒜 are Σin
𝛼 definable without parameters.

5. No tuple in 𝒜 is 𝛼-free.

The least 𝛼 such that 𝒜 satisfies any of the conditions is the (parameterless) Scott rank of 𝒜,
𝑆𝑅(𝒜).

A tuple 𝑎 is 𝛼-free in 𝒜 if (∀𝛽 < 𝛼)∀𝑏∃𝑎′, 𝑏′ (𝑎𝑏 ≤𝛽 𝑎′𝑏′ ∧ 𝑎 ≰𝛼 𝑎′) . 5



Scott analysis of theories

Definition (Makkai 1981)
The Scott spectrum of a theory 𝑇 is the set

𝑆𝑆𝑝(𝑇 ) = {𝛼 ∈ 𝜔1 ∶ there is a countable model of 𝑇 with Scott rank 𝛼}.

Here 𝑇 might be a sentence in 𝐿𝜔1𝜔 .

• Ash (1986) 𝑆𝑅(𝑛) = 1, 𝑆𝑅(𝜔𝛼) = 2𝛼, 𝑆𝑅(𝜔𝛼 + 𝜔𝛼) = 2𝛼 + 1
⟹ 𝑆𝑆𝑝(𝐿𝑂) = 𝜔1 − {0}

• The standard model ℕ of 𝑃 𝐴 has Scott rank 1: Every element is the 𝑛th successor of ̇0 for
some 𝑛 ∈ 𝜔, so the automorphism orbits are definable by 𝑠(𝑠(… ( ̇0) … )) = 𝑥.

• 1 ∈ 𝑆𝑆𝑝(𝑃𝐴)

What else can we say about the Scott spectra of 𝑃𝐴 and completions of 𝑃 𝐴?
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Scott spectrum of 𝑃𝐴

Theorem (Montalbán, R. 2022)

1. 𝑆𝑆𝑝(𝑃𝐴) = 1 ∪ {𝛼 ∶ 𝜔 ≤ 𝛼 < 𝜔1}, 𝑆𝑆𝑝(𝑇 ℎ(ℕ)) = 1 ∪ {𝛼 ∶ 𝜔 < 𝛼 < 𝜔1}, and
for 𝑇 a non-standard completion of 𝑃𝐴, 𝑆𝑆𝑝(𝑇 ) = [𝜔, 𝜔1).

2. If ℳ is non-homogeneous, then 𝑆𝑅(ℳ) ≥ 𝜔 + 1.
3. If ℳ is non-standard atomic , then 𝑆𝑅(ℳ) = 𝜔.
4. If ℳ is non-standard homogeneous, then 𝑆𝑅(ℳ) ∈ [𝜔, 𝜔 + 1].
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No non-standard model has finite Scott rank

Let 𝑇 𝑟Δ0
1
be a truth predicate for bounded formulas and define:

𝑢̄ ≤𝑎
0 ̄𝑣 ⇔ ∀(𝑥 ≤ 𝑎)(𝑇 𝑟Δ0

1
(𝑥, 𝑢̄) → 𝑇 𝑟Δ0

1
(𝑥, ̄𝑣))

𝑢̄ ≤𝑎
𝑛+1 ̄𝑣 ⇔ ∀ ̄𝑥∃ ̄𝑦(| ̄𝑥| ≤ 𝑎 → (| ̄𝑦| ≤ 𝑎 ∧ 𝑢̄ ̄𝑥 ≤𝑎

𝑛 ̄𝑣 ̄𝑦))

Proposition

Let ̄𝑎, 𝑏̄ ∈ 𝑀. Then ̄𝑎 ≤𝑛 𝑏̄ ⇔ ∀(𝑚 ∈ 𝜔)ℳ ⊧ ̄𝑎 ≤𝑚̇
𝑛 𝑏̄. Furthermore, if there is 𝑐 ∈ 𝑀 − ℕ

such that ℳ ⊧ ̄𝑎 ≤𝑐
𝑛 𝑏̄, then ̄𝑎 ≤𝑛 𝑏̄.

Lemma For every ̄𝑎, 𝑏̄ ∈ 𝑀<𝜔 , ̄𝑎 ≤𝜔 𝑏̄ if and only if 𝑡𝑝( ̄𝑎) = 𝑡𝑝(𝑏̄).

Proof sketch.
(⇒) The conjunction over all formulas in a type is Πin

𝜔 and ̄𝑎 ≤𝜔 𝑏̄ iff Πin
𝜔 -tp(𝑎) ⊆ Πin

𝜔 -tp(𝑏).
(⇐) Take 𝒩 ⪰ ℳ homogeneous, then 𝑡𝑝(𝑎) = 𝑡𝑝(𝑏) ⟹ 𝑏 ∈ 𝑎𝑢𝑡𝒩(𝑎), so 𝑎 ≤𝜔 𝑏 and
for all 𝑛, 𝑚, 𝑎 ≤𝑚̇

𝑛 𝑏. This also holds in ℳ. Lemma follows by definition of ≤𝜔 .
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No non-standard model has finite Scott rank

The lemma implies that non-homogeneous models of 𝑃𝐴 cannot have Scott rank ≤ 𝜔 as they
contain 𝑎, 𝑏 with 𝑡𝑝(𝑎) = 𝑡𝑝(𝑏), hence 𝑎 ≤𝜔 𝑏 and 𝑎 ∉ 𝑎𝑢𝑡(𝑏).

Using the definability of the formal back-and-forth relations and elementary extending to
non–homogeneous models we get the lower bounds.

Lemma
If ℳ is a non-standard model of 𝑃 𝐴 then 𝑆𝑅(ℳ) ≥ 𝜔.
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Building models

If for any countable well-order 𝐿 we can find a model ℳ𝐿 such that 𝐿 is infinitary
bi-interpretable with ℳ𝐿 by formulas of the right complexity then we would get
𝑆𝑅(ℳ𝐿)) = 𝜔 + 𝑆𝑅(𝐿).

Theorem (Gaifman 1976)
Let 𝑇 be a completion of 𝑃 𝐴 and 𝐿 a linear order. Then there is a model ℳ𝐿 of 𝑇 with
𝐴𝑢𝑡(𝒩𝐿) ≅ 𝐴𝑢𝑡(𝐿).

Theorem (Harrison-Trainor, Montalbán, Miller 2018)
Two countable structures 𝒜 and ℬ are infinitary bi-interpretable if and only if their
automorphism groups are isomorphic.

A careful analysis of Gaifman’s theorem shows that the complexity of the formulas involved in the
bi-interpretation is just right so that we can find models ℳ𝐿 with 𝑆𝑅(ℳ𝐿) = 𝜔 + 𝑆𝑅(𝐿).
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Theorem (Montalbán, R. 2022)

1. 𝑆𝑆𝑝(𝑃𝐴) = 1 ∪ {𝛼 ∶ 𝜔 ≤ 𝛼 < 𝜔1}, 𝑆𝑆𝑝(𝑇 ℎ(ℕ)) = 1 ∪ {𝛼 ∶ 𝜔 < 𝜔 < 𝜔1}, and
for 𝑇 a non-standard completion of 𝑃𝐴, 𝑆𝑆𝑝(𝑇 ) = [𝜔, 𝜔1).

2. If ℳ is non-homogeneous, then 𝑆𝑅(ℳ) ≥ 𝜔 + 1.
3. If ℳ is non-standard atomic , then 𝑆𝑅(ℳ) = 𝜔.
4. If ℳ is non-standard homogeneous, then 𝑆𝑅(ℳ) ∈ [𝜔, 𝜔 + 1].

• 𝑆𝑆𝑝 for completions of 𝑃 𝐴− + 𝐼Σ𝑛 ?
• 𝑆𝑆𝑝 for other foundational theories 𝑍2, 𝐾𝑃 , 𝑍𝐹 , …?
• Are there non-atomic homogeneous models of 𝑃𝐴 of Scott rank 𝜔?
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A philosophical take

Theorem (Łełyk, Szlufik 2023; in preparation)
If ℳ is a homogeneous model of PA that is not atomic, then 𝑆𝑅(ℳ) = 𝜔 + 1.

Kalociński 2023: Many theories have an intended model, a model that we have in mind when
axiomatizing the theory. In the case of PA, this intendedness can be seen in the Scott analysis.
Does this phenomenon also appear in other theories? Can we discover intended models from
Scott analysis?

Already for fragments of second-order arithmetic, one can see that Scott analysis does not reveal
intendedness.

For 𝑅𝐶𝐴0 (𝑃 𝐴− + 𝐼Σ0
1 + Δ0

1-𝐶𝐴), (ℕ, 𝑆) ⊧ 𝑅𝐶𝐴0 when 𝑆 is a countable Turing ideal and
all of these models have same Scott rank.

⟹ computable Scott rank
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The complexity of the set of models
of a theory



The set of models of arithmetic

So far we have attempted to measure the complexity of 𝑇 via its isomorphism relation. Why not
look at the descriptive complexity of its set of models?

Definition
Let 𝑋 be a Polish space and 𝐴 ⊆ 𝑋, then for any point class Γ, 𝐴 is Γ-complete if 𝐴 ∈ Γ(𝑋)
and for every 𝐵 ∈ Γ(𝑌 ) for any Polish 𝑌, 𝐵 is Wadge reducible to 𝐴, 𝐵 ≤𝑊 𝐴, i.e., there is
continuous 𝑓 ∶ 𝑌 → 𝑋 with 𝑓(𝑦) ∈ 𝑋 if and only 𝑦 ∈ 𝑌.

For any theory 𝑇, 𝑀𝑜𝑑(𝑇 ) ∈ ΠΠΠ0
𝜔 .

Is 𝑀𝑜𝑑(𝑇 𝐴), the set of models of true arithmeticΠΠΠ0
𝜔-complete?
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Main theorem

Theorem (Andrews, Lempp, R. in preparation)
For any complete first-order theory 𝑇, 𝑀𝑜𝑑(𝑇 ) isΠΠΠ0

𝜔 complete if and only if 𝑇 has no
axiomatization by formulas of bounded quantifier-complexity.

The theorem suggests that 𝐿𝜔1𝜔 is not more efficient when talking about sets of models. I.e.,

Corollary
If 𝑇 is not bounded axiomatizable, then 𝑀𝑜𝑑(𝑇 ) is is not Σin

𝑛 definable for any 𝑛 ∈ 𝜔.

Proof.
Assume it was, then by Lopez-Escobar 𝑀𝑜𝑑(𝑇 ) isΣΣΣ0

𝑛 and thus notΠΠΠ0
𝜔-complete. So it is

axiomatizable by formulas of bounded quantifier-complexity.
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Proof of theorem

(⇐) Say, 𝑆 is a set of Σ𝑛 formulas axiomatizing 𝑀𝑜𝑑(𝑇 ), then ⋀
𝜑∈𝑆

𝜑 is Πin
𝑛+1 and hence by

Lopez-Escobar, 𝑀𝑜𝑑(𝑇 ) isΠΠΠ0
𝑛+1 .

(⇒) This direction relies on an old theorem due to Solovay.

Theorem (Solovay 1982)
Let 𝑇 be a complete theory. Suppose 𝑅 ≤𝑇 𝑋 is an enumeration of a Scott set 𝑆, with functions
𝑡𝑛 which are Δ0

𝑛(𝑋) uniformly in 𝑛, such that for each 𝑛, lim𝑠 𝑡𝑛(𝑠) is an 𝑅-index for 𝑇 ∩ Σ𝑛 ,
and for all 𝑠, 𝑡𝑛(𝑠) is an 𝑅-index for a subset of 𝑇 ∩ Σ𝑛 . Then 𝑇 has a model ℬ, representing 𝑆,
with ℬ ≤𝑇 𝑋.

• Known proofs use methods for iterated Priority constructions
• Original proof uses a Harrington style worker argument
• Version above is due to Knight (1999) and proved using version of 𝛼-systems
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Proof of theorem ctd

A Scott set 𝑆 ⊆ 2𝜔 is a set satisfying

1. 𝑥 ≤𝑇 𝑦 and 𝑦 ∈ 𝑆 ⟹ 𝑥 ∈ 𝑆,
2. 𝑥, 𝑦 ∈ 𝑆 ⟹ 𝑥 ⊕ 𝑦 ∈ 𝑆,
3. and if 𝑥 ∈ 𝑆 codes an infinite binary tree 𝑇𝑥 , then 𝑆 ∩ [𝑇𝑥] ≠ ∅.

𝑅 ∈ 2𝜔 is an enumeration of a Scott set 𝑆 if {𝑅[𝑖] ∶ 𝑖 ∈ 𝜔} = 𝑆.

A countable model ℳ represents a countable Scott set 𝑆 if for all complete 𝐵𝑛-types Γ(𝑢̄, 𝑥)
and all ̄𝑐 ∈ 𝑀:

Γ( ̄𝑐, 𝑥) realized in ℳ ⟺ Γ ∈ 𝑆 and 𝐶𝑜𝑛(Γ( ̄𝑐, 𝑥) ∪ 𝐷𝑖𝑎𝑔𝑒𝑙(ℳ)).
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1. 𝑥 ≤𝑇 𝑦 and 𝑦 ∈ 𝑆 ⟹ 𝑥 ∈ 𝑆,
2. 𝑥, 𝑦 ∈ 𝑆 ⟹ 𝑥 ⊕ 𝑦 ∈ 𝑆,
3. and if 𝑥 ∈ 𝑆 codes an infinite binary tree 𝑇𝑥 , then 𝑆 ∩ [𝑇𝑥] ≠ ∅.

𝑅 ∈ 2𝜔 is an enumeration of a Scott set 𝑆 if {𝑅[𝑖] ∶ 𝑖 ∈ 𝜔} = 𝑆.

A countable model ℳ represents a countable Scott set 𝑆 if for all complete 𝐵𝑛-types Γ(𝑢̄, 𝑥)
and all ̄𝑐 ∈ 𝑀:

Γ( ̄𝑐, 𝑥) realized in ℳ ⟺ Γ ∈ 𝑆 and 𝐶𝑜𝑛(Γ( ̄𝑐, 𝑥) ∪ 𝐷𝑖𝑎𝑔𝑒𝑙(ℳ)).
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TheoriesΠΠΠ0
𝜔-complete models

Fix a theory 𝑇 not axiomatizable by bounded quantifier formulas and theories 𝑇𝑛 ≠ 𝑇 such that
𝑇𝑛 ∩ Σ𝑛 = 𝑇 ∩ Σ𝑛 , an enumeration 𝑅 of a Scott set 𝑆 containing 𝑇 , (𝑇𝑛) and a Borel code 𝐶
for a fixedΠΠΠ0

𝜔 set 𝑃 = ⋂ 𝑃𝑛 where 𝑃𝑛 is Σ𝑛 .

In order to prove our theorem we:

• Given 𝑥 produce (indices) for functions 𝑡𝑛 such that 𝑡𝑛(𝑥(𝑛−1), 𝑠) = 𝑅(𝑇𝑛+1) if
𝑥 ∉ 𝑃𝑛,𝑠 and 𝑡𝑛(𝑥(𝑛−1), 𝑠) = 𝑅(𝑇 ) otherwise. This can be done recursive in 𝑥 ⊕ 𝑆 ⊕ 𝐶.

• Verify that Solovay’s theorem is continuous, i.e., the function 𝑇 ↦ ℬ is continuous.

Corollary
𝑀𝑜𝑑(𝑃𝐴), and 𝑀𝑜𝑑(𝑇 ) for 𝑇 a completion of 𝑃𝐴 areΠΠΠ0

𝜔-complete.

Proof.
By Tarski’s undefinability of truth, no completion of 𝑃 𝐴 is axiomatizable by formulas of bounded
quantifier-complexity. To get 𝑀𝑜𝑑(𝑃 𝐴) take 𝑇 = 𝑇 𝐴 and let 𝑇𝑛 such that 𝑇𝑛 ̸⊧𝐼Σ𝑛 .
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Sequential theories

What about other theories, what role does induction play in this? How about completions of
𝑃𝐴−? We asked Roman Kossak who asked Ali Enayat and Albert Visser.

Definition (Pudlák 1983, Pakhomov and Visser 2022)
A (possibly incomplete) 𝜏-theory 𝑇 is sequential if it admits a definitional extension to Adjunctive
set theory AS(𝑇 ), namely, in 𝜏 ⊔ {∈}, we have the axioms

1. ∃𝑥 ∀𝑦 (¬𝑦 ∈ 𝑥) (”the empty set exists”), and
2. ∀𝑥 ∀𝑦 ∃𝑧 ∀𝑤 (𝑤 ∈ 𝑧 ↔ (𝑤 ∈ 𝑥 ∨ 𝑤 = 𝑦)) (“𝑥 ∪ {𝑦} exists”).

In essence, sequential theories allow for coding of finite sequences as in Gödel’s 𝛽-function (but
do not require, e.g., extensionality).

Examples of sequential theories:

𝑃𝐴, 𝐼Δ0 + exp, 𝑍𝐹, 𝐾𝑃, even 𝑃 𝐴− (Jeřábek 2012), AS = AS(∅) (Pakhomov, Visser 2022),
but not Robinson’s 𝑄.
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Enayat und Visser’s result

Theorem (Enayat, Visser in preparation)
No sequential theory in finite vocabulary has an axiomatization by sentences of bounded
quantifier complexity.

The finiteness condition here is essential. Consider the Morleyization of true arithmetic (add a
relation 𝑅𝜑 for every formula 𝜑). This has a compositional axiomatization in the style of Tarski’s
definition of satisfaction, and hence an axiomatization by Π2 formulas.

Corollary
If 𝑇 is sequential in finite vocabulary, then 𝑀𝑜𝑑(𝑇 ) isΠΠΠ0

𝜔 complete.
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Further work

Our techniques can be used to give an alternative proof to a remarkable result by Harrison-Trainor
and Kretschmer which is another witness that 𝐿𝜔1𝜔 is not more efficient than first-order logic.

Corollary (Harrison-Trainor, Kretschmer 2022; ALR, Gonzalez, Zhu in preparation)
If 𝜑 is a first-order formula that is equivalent to a Σin

𝑛 formula, then 𝜑 is equivalent to a Σ𝑛
formula.

We are currently working on extending this to a full characterization of the complexity of a
theories’ set of models in terms of first-order axiomatization.

Thank you!
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