Learning equivalence relations

joint work with Ted Slaman and Tomasz Steifer
Dino Rossegger
Technische Universität Wien
Online Logic Seminar

LEARNING FROM INFORMANT

Gold (1961) considered the following application of inductive inference:
Given a fixed sequence of languages l_{1}, l_{2}, \ldots an informant secretly fixes a language l_{i} and at every stage s, presents the learner with a new word $w_{s} \in l_{i}$. The learner makes a guess $l\left(w_{0}, \ldots, w_{s}\right)$ to identify the presented language. They learn the language if they correctly guess in the limit, i.e., $\lim _{s} l\left(w_{0}, \ldots, w_{s}\right)=i$.

LEARNING FROM INFORMANT

Gold (1961) considered the following application of inductive inference:
Given a fixed sequence of languages l_{1}, l_{2}, \ldots an informant secretly fixes a language l_{i} and at every stage s, presents the learner with a new word $w_{s} \in l_{i}$. The learner makes a guess $l\left(w_{0}, \ldots, w_{s}\right)$ to identify the presented language. They learn the language if they correctly guess in the limit, i.e., $\lim _{s} l\left(w_{0}, \ldots, w_{s}\right)=i$.

Fokina-Kötzing-San Mauro (2019) looked at this in a computable structure theory setting:
InfEx learning: Given a fixed sequence of countable pairwise non-isomorphic structures $\mathcal{A}_{0}, \mathcal{A}_{1} \ldots$, the informant fixes an "example" $\mathcal{B} \cong \mathcal{A}_{i}$ and at stage s plays the substructure on the first s elements of \mathcal{B}. Again the learner makes a guess $l(\mathcal{B} \upharpoonright s)$ and learns the family $\mathcal{A}_{0}, \mathcal{A}_{1}, \ldots$ if for any \mathcal{A}_{i} and $\mathcal{B} \cong \mathcal{A}_{i}, \lim _{s}(\mathcal{B} \upharpoonright s)=i$.

Formalizing Infex Learning

For given vocabulary τ fix an enumeration $\varphi_{i}\left(x_{0}, \ldots, x_{i}\right)$ of the atomic τ-formulas and let the atomic diagram of a τ-structure \mathcal{A} with universe ω be

$$
D(\mathcal{A})(i)= \begin{cases}1 & \varphi_{i}\left[x_{0} \ldots x_{i} \mapsto 0 \ldots i\right]^{\mathcal{A}} \\ 0 & \text { otherwise }\end{cases}
$$

Allows us to identify structures with elements of 2^{ω}.

Definition

A pairwise non-isomorphic family of countable structures \mathcal{A}_{0}, \ldots is InfEx learnable if there is a function $l: 2^{<\omega} \rightarrow \omega$ such that for any i and $\mathcal{B} \cong \mathcal{A}_{i}, L(\mathcal{B})=\lim _{s} l(\mathcal{B} \upharpoonright s)=i$.

Two THEOREMS

An infinitary formula φ is Σ_{2}^{in} if it is of the form $\mathbb{W} \exists \bar{x}_{i} \mathbb{M} \forall \bar{y}_{i j} \varphi_{i j}$ where $\varphi_{i j}$ is quantifier-free.
Theorem (Bazhenov, Fokina, San Mauro 2020)
A countable sequence \mathcal{A}_{0}, \ldots is InfEx learnable if and only if there are $\Sigma_{2}^{\text {in }}$ formulas φ_{i} such that $\mathcal{A}_{i} \vDash \varphi_{i}$ and $\mathcal{A}_{j} \not \neq \varphi_{i}$ for $i \neq j$.

A binary relation E on a Polish space X is continuously (Borel) reducible to F on $Y, E \leq_{c(B)} F$ if there is a continuous (Borel) function $f: X \rightarrow Y$ s.t. for all $x, y \in X, x E y$ iff $f(x) F f(y)$.

Theorem (Bazhenov, Cipriani, San Mauro 2023)
A countable sequence \mathcal{A}_{0}, \ldots is InfEx learnable if and only if $\cong\left(\mathcal{A}_{i}\right) \leq{ }_{c} E_{0}$.

LOCAL TO GLOBAL

1. The space of countable τ-structures $\operatorname{Mod}(\tau)$ is a Polish space.
2. $\operatorname{Mod}(\tau) / \cong$ is not countable in non-trivial cases
3. InfEx learnability is a property of \cong on \mathcal{A}_{0}, \ldots

What about \cong on the whole space or uncountable invariant subsets of $\operatorname{Mod}(\tau)$?
Why restrict to \cong and not look at other equivalence relations on Polish spaces?
The investigation of these two questions is the goal of this project.

LEARNABILITY FOR EQUIVALENCE RELATIONS

- Consider ω with the discrete topology and 2^{ω} with the product topology.
- The function $L: 2^{\omega} \rightarrow \omega, L(\mathcal{A})=\lim _{s} l(\mathcal{A} \upharpoonright s)$ is not continuous.
- The function $l_{s}: 2^{\omega} \rightarrow \omega l_{s}(\mathcal{A})=l(\mathcal{A} \upharpoonright s)$ is continuous. So, $L(\mathcal{A})=\lim _{s} l_{s}(\mathcal{A})$.

Definition

Let E be an equivalence relation on a Polish space X and assume ω is equipped with the discrete topology. E is uniformly learnable, or just learnable, if there are continuous functions $l_{n}: X^{\omega} \times X \rightarrow \omega$ such that for $x \in X$ and $\vec{x}=\left(x_{i}\right)_{i \in \omega} \in X^{\omega}$, if $x E x_{i}$ for some $i \in \omega$, then $\lim l_{n}(\vec{x}, x)$ exists and $x E x_{L(\vec{x}, x)}$ where $L(\vec{x}, x)=\lim l_{n}(\vec{x}, x)$.

If $x \not \equiv \vec{x}$, then L might either diverge or converge to some i. In the latter case we say that L produces a false positive.

A Borel CLASSIFICATION OF LEARNABLE EQUIVALENCE RELATIONS

Disclaimer: To avoid dealing with effective Polish spaces and make proofs easier we will assume that we are working on 2^{ω}. Unless stated otherwise, all proofs work for arbitrary Polish spaces, mutatis mutandis.

For $a \in 2^{\omega}$ we say that a learner L is a-computable if there is an a-recursive function $f: \omega \rightarrow \omega$ such that $l_{s}=\Phi_{f(s)}^{a}$ where $\left(\Phi_{i}\right)_{i \in \omega}$ is a canonical enumeration of Turing operators.

Theorem (RSS)
Fix $a \in 2^{\omega}$. An equivalence relation E on a Polish space X is learnable by an a-computable learner if and only if it is $\Sigma_{2}^{0}(a)$.

PROOF

Proof. (\Leftarrow). Say E is $\Sigma_{2}^{0}(a)$, then there exists an a-recursive predicate R such that

$$
x E y \Longleftrightarrow \exists n \forall m R(x, y, n, m)
$$

Define l_{s} by

$$
l_{s}(\vec{x}, x)= \begin{cases}\mu i<s\left[(\exists n<s)(\forall m<s) R\left(x, x_{i}, m\right)\right] & \text { if such } i<s \text { exists } \\ s & \text { otherwise }\end{cases}
$$

Note that l_{s} is recursive in a and that $\lim _{s} l_{s}(\vec{x}, x)=\mu j\left[x_{j} E x\right]$, if such j exists. Otherwise $\lim _{s} l_{s}(\vec{x}, x) \uparrow$. Hence, $L=\lim _{s} l_{s}$ does not produce false positives!
(\Rightarrow). Say E is learnable by an a-computable learner L and consider arbitrary $x, y \in 2^{\omega}$. We will extract a $\Sigma_{2}^{0}(a)$ definition using forcing. The main idea is that if we take a sufficiently mutually (a, x, y)-generic sequence \vec{g}, then the behaviour of the learner on $L\left(x, y^{`} \vec{g}\right)$ is forced by some condition \vec{p}, and similarly for $L\left(y, x^{\curvearrowright} \vec{g}\right)$. Using this \vec{p} we can extract a $\Sigma_{2}^{0}(a)$ formula that is independent of x, y and defines E.

WARM-UP: FALSE POSITIVES

Lemma

If g, \vec{g} is a sequence of sufficiently mutually generics relative to L and $L(g, \vec{g})=k$, then there are $p, \vec{p} \prec g, \vec{g}$, such that L does not produce false positives for any $h, \vec{h} \succ p, \vec{p}$.

Proof.
Take g, \vec{g} sufficiently L-generic. We have that $L(\vec{g}, g) \downarrow=k$ iff $\exists n(\forall m>n) l_{m}(g, \vec{g})=k$. Let n_{0} be the least such n. Then the above statement must be forced by some p, \vec{p}, i.e.,

$$
\begin{aligned}
& \vec{p}, p \Vdash\left(\forall m>n_{0}\right) l_{m}(\dot{\vec{g}}, \dot{g}) \downarrow=k \\
\Leftrightarrow & \left(\forall m>n_{0}\right)(\forall \vec{q}, q \leq \vec{p}, p)\left(l_{m}(\vec{q}, q) \downarrow \Longrightarrow l_{m}(\vec{q}, q)=k\right)
\end{aligned}
$$

But then in particular $L\left(h, h_{0} \ldots h_{i} h h_{i+2} \ldots\right)=k$ where $i \neq k-1$ and $i>|\vec{p}|$ and $h E h_{k}$ as L cannot give false positives since $h E h$.
(\Leftarrow). Say E is learnable by an a-computable learner L and $x E y$. Take \vec{g} sufficiently mutually (x, y, a)-generic and look at $L\left(x, y^{\wedge} \vec{g}\right), L\left(y, x^{\wedge} \vec{g}\right)$. Say $L\left(x, y^{\wedge} \vec{g}\right)=0$, then by genericity x, y satisfy the following formula:

$$
\begin{equation*}
\exists n_{0} \exists \vec{p}(\forall \vec{q} \leq \vec{p})\left(\forall n>n_{0}\right)\left(l_{n}\left(x, y^{`} \vec{q}\right) \downarrow \Longrightarrow l_{n}\left(x, y^{\curvearrowright} \vec{q}\right)=0\right) \tag{*}
\end{equation*}
$$

(\Leftarrow). Say E is learnable by an a-computable learner L and $x E y$. Take \vec{g} sufficiently mutually (x, y, a)-generic and look at $L\left(x, y^{\wedge} \vec{g}\right), L\left(y, x^{\wedge} \vec{g}\right)$. Say $L\left(x, y^{\wedge} \vec{g}\right)=0$, then by genericity x, y satisfy the following formula:

$$
\begin{equation*}
\exists n_{0} \exists \vec{p}(\forall \vec{q} \leq \vec{p})\left(\forall n>n_{0}\right)\left(l_{n}\left(x, y^{`} \vec{q}\right) \downarrow \Longrightarrow l_{n}\left(x, y^{\curlyvee} \vec{q}\right)=0\right) \tag{*}
\end{equation*}
$$

Likewise if $L\left(y, x^{\curvearrowleft} \vec{g}\right)=0$ then

$$
\begin{equation*}
\exists n_{0} \exists \vec{p}(\forall \vec{q} \leq \vec{p})\left(\forall n>n_{0}\right)\left(l_{n}\left(y, x^{\curvearrowright} \vec{q}\right) \downarrow \Longrightarrow l_{n}\left(y, x^{\curvearrowright} \vec{q}\right)=0\right) \tag{**}
\end{equation*}
$$

If $L\left(x, y^{\frown} \vec{g}\right)=i_{0} \neq 0$ and $L\left(y, x^{\curvearrowright} \vec{g}\right)=i_{1} \neq 0$, then $x E g_{i_{0}}, y E g_{i_{1}}$, and this is forced by some \vec{p}^{1} and \vec{p}^{2} and for any $\vec{h} \succ \vec{p}^{1}, L\left(x, y^{\frown} \vec{h}\right)=i_{0}$ (same for $\vec{h} \succ \vec{p}^{2}$) and $x E h_{i_{0}}$, y $E h_{i_{1}}$.

Look at $h \succ \vec{p}_{i_{0}}^{1}, \vec{h} \succ\left(p_{i_{1}}^{2}\right)^{\infty}$. By transitivity of $E, L(h, \vec{h})=k$ for some k and this is again forced.

$$
\begin{aligned}
\exists n_{0} \exists \vec{p}_{0}, \vec{p}_{1} \exists i_{0}, i_{1}\left(\forall n>n_{0}\right)\left(\forall \vec{q} \leq \vec{p}_{0}\right)(L(x, y \frown \vec{q}, n) \downarrow & \left.\Longrightarrow L(x, y \smile \vec{q}, n)=i_{0}\right) \\
\wedge\left(\forall \vec{q} \leq \vec{p}_{1}\right)(L(y, x \frown \vec{q}, n) \downarrow & \left.\Longrightarrow L(y, x \frown \vec{q}, n)=i_{1}\right)
\end{aligned}
$$

$$
\wedge \exists k\left(\exists r \leq \vec{p}_{i_{0}}^{0}\right)\left(\exists \vec{r} \leq \vec{p}_{i_{1}}^{\infty}\right)\left(\forall n>n_{0}\right)(\forall q \leq r)(\forall \vec{q} \leq \vec{r})
$$

$$
(L(q, \vec{q}, n) \downarrow \Longrightarrow L(q, \vec{q}, n)=k)
$$

If $x E y$ then they satisfy $(*),(* *)$ or $(* * *)$. If $x \notin y$, they might still satisfy $(* * *)$ if $L(h, \vec{h})$ gives false positives. But that cannot happen by our lemma. $(*) \vee(* *) \vee(* * *)$ define E.

EXAMPLES OF LEARNABLE EQUIVALENCE RELATIONS

- Eventual equality on $2^{\omega}: x E_{0} y \Longleftrightarrow \exists m(\forall n>m) x(n)=y(n)$
- Eventual equality on $2^{\omega \omega}:\left(x_{i}\right) E_{1}\left(y_{i}\right) \Longleftrightarrow \exists m(\forall n>m) x_{n}=y_{n}$
- The shift action of F_{2} on $2^{F_{2}}, E\left(F_{2}, 2\right)$.

Theorem (Bazhenov, Cipriani, San Mauro)
A countable sequence \mathcal{A}_{0}, \ldots is InfEx learnable if and only if $\cong_{\left(\mathcal{A}_{i}\right)} \leq_{c} E_{0}$.

- This characterization fails in our case, even for Borel reducibility, neither E_{1}, nor $E\left(F_{2}, 2\right)$ are Borel reducible to E_{0}.
- It follows from the Feldman-Moore theorem that for any countable Borel equivalence relation E, there is a topology such that E is $\boldsymbol{\Sigma}_{\mathbf{2}}^{\mathbf{0}}$.

EXAMPLES OF LEARNABLE EQUIVALENCE RELATIONS

- Eventual equality on $2^{\omega}: x E_{0} y \Longleftrightarrow \exists m(\forall n>m) x(n)=y(n)$
- Eventual equality on $2^{\omega \omega}:\left(x_{i}\right) E_{1}\left(y_{i}\right) \Longleftrightarrow \exists m(\forall n>m) x_{n}=y_{n}$
- The shift action of F_{2} on $2^{F_{2}}, E\left(F_{2}, 2\right)$.

Theorem (Bazhenov, Cipriani, San Mauro)
A countable sequence \mathcal{A}_{0}, \ldots is InfEx learnable if and only if $\cong_{\left(\mathcal{A}_{i}\right)} \leq_{c} E_{0}$.

- This characterization fails in our case, even for Borel reducibility, neither E_{1}, nor $E\left(F_{2}, 2\right)$ are Borel reducible to E_{0}.
- It follows from the Feldman-Moore theorem that for any countable Borel equivalence relation E, there is a topology such that E is $\boldsymbol{\Sigma}_{\mathbf{2}}^{0}$.

Question: Is there a universal learnable equivalence relation for continuous or Borel reducibility?
This question (with $\mathbf{\Sigma}_{\mathbf{2}}^{\mathbf{0}}$) seems to be open for many years.

EXAMPLE: ISOMORPHISM RELATIONS

By a result of Arnie Miller ('83), no structure can have a $\Sigma_{2}^{\text {in }} \operatorname{Scott}$ sentence, i.e., for no $\mathcal{A},[\mathcal{A}]_{\cong}$ is $\boldsymbol{\Sigma}_{2}^{0}$. This implies that \cong in a vocabulary τ cannot be $\boldsymbol{\Sigma}_{2}^{0}$.

Proposition
Let τ be a countable vocabulary. Then $\operatorname{Mod}(\tau)$ is not learnable.
If we restrict to structures satisfying a fixed $L_{\omega_{1} \omega}$ sentence φ, we can find examples of learnable structures.

Example: Let φ axiomatize torsion free Abelian groups of rank 1 , then \cong_{φ} is learnable.

COMPLEXITY OF LEARNING

- Represent $\boldsymbol{\Sigma}_{\mathbf{2}}^{\mathbf{0}}$ relations using Borel codes. (Well-founded infinitely branching trees labeled with \cup, \cap, and codes for finite intersections of basic open sets)
- These codes can be coded by elements of 2^{ω}.
- How complicated is the set of codes of learnable Borel equivalence relations?

COMPLEXITY OF LEARNING

- Represent $\boldsymbol{\Sigma}_{\mathbf{2}}^{\mathbf{0}}$ relations using Borel codes. (Well-founded infinitely branching trees labeled with \cup, \cap, and codes for finite intersections of basic open sets)
- These codes can be coded by elements of 2^{ω}.
- How complicated is the set of codes of learnable Borel equivalence relations?

Theorem (Louveau 1980)

If X is a recursive Polish space, $A_{0}, A_{1} \in \Sigma_{1}^{1}, A_{0} \cap A_{1}=\emptyset$ s.t. there is $B \in \Sigma_{\alpha}^{0}$ with $A_{0} \subseteq B$ and $A_{1} \cap B=\emptyset$, then B can be taken in $\Sigma_{\alpha}^{0}(H Y P)$.

Lemma

If E is Δ_{1}^{1} and learnable, then it is learnable by a hyperarithmetical learner.
Proof sketch.
By Louveau's separation theorem, if E is $\boldsymbol{\Sigma}_{\mathbf{2}}^{\mathbf{0}}$ and Δ_{1}^{1}, then it is $\Sigma_{2}^{0}(H Y P)$. Thus by our theorem, it is learnable by a hyperarithmetical learner.

Lemma

The set of codes of learnable Borel equivalence is Π_{1}^{1}.

Proof sketch.

T codes a learnable equivalence relation iff (1) T is well-founded, (2) its labeling is correct, and (3) there is a learner learning E_{T}. The first statement is Π_{1}^{1}, the second arithmetical and the third can be replaced by (3^{\prime}) there is a learner hyperarithmetical in T by the above Lemma. By the spector-Gandy theorem, $\left(3^{\prime}\right)$ is Π_{1}^{1}.

Lemma

The set of codes of learnable Borel equivalence is Π_{1}^{1}.

Proof sketch.

T codes a learnable equivalence relation iff (1) T is well-founded, (2) its labeling is correct, and (3) there is a learner learning E_{T}. The first statement is Π_{1}^{1}, the second arithmetical and the third can be replaced by (3^{\prime}) there is a learner hyperarithmetical in T by the above Lemma. By the Spector-Gandy theorem, (3^{\prime}) is Π_{1}^{1}.

Theorem (RSS)

The set of learnable $\boldsymbol{\Pi}_{2}^{0}$ equivalence relations on 2^{ω} is $\boldsymbol{\Pi}_{1}^{1}$ complete in the codes.

Proof sketch.

Use the fact that the set of well-founded trees in $\omega^{<\omega}$ is Π_{1}^{1} complete and that $\operatorname{In} f=\left\{x \in 2^{\omega}:|\operatorname{dom}(x)|=\infty\right\}$ is Π_{2}^{0} complete. For $x \in \operatorname{In} f$ let p_{x} be the principal function of x and define E_{T} as

$$
x E_{T} y \Longleftrightarrow x=y \vee\left(p_{x_{1}}, p_{y_{1}} \in[T] \wedge x_{2}, y_{2} \in \operatorname{In} f\right)
$$

If T is well-founded, $E_{T}=i d$. Otherwise fix $x \in[T], E_{T}$ can't be learnable since then

Alternative definition: Borel learnable

Definition

Let E be an equivalence relation on a Polish space X and assume ω is equipped with the discrete topology. E is uniformly Borel learnable, or just Borel learnable, if there are Borel
functions $l_{n}: X^{\omega} \times X \rightarrow \omega$ such that for $x \in X$ and $\vec{x}=\left(x_{i}\right)_{i \in \omega} \in X^{\omega}$, if $x E x_{i}$ for some $i \in \omega$, then $\lim l_{n}(\vec{x}, x)$ exists and $x E x_{L(\vec{x}, x)}$ where $L(\vec{x}, x)=\lim l_{n}(\vec{x}, x)$.

Borel learnability is connected to uniform learnability via the following classic fact:

Theorem

For Polish spaces $(X, \sigma), Y$ and a Borel function $f: X \rightarrow Y$, there exists a topology $\tau \supseteq \sigma$ of X such that $B((X, \tau))=B((X, \sigma))$ and $f: X \rightarrow Y$ is τ-continuous.

Proposition

An equivalence relation E is on X is Borel learnable if and only if there exists a refinement of the topology on X such that E is uniformly learnable.

Alternative definition: Non-uniform learnability

Definition

Let E be an equivalence relation on a Polish space X and assume ω is equipped with the discrete topology. We say that E is non-uniformly learnable, if for every $\vec{x}=\left(x_{i}\right)_{i \in \omega} \in X^{\omega}$ there are continuous functions $l_{n}: X^{\omega} \times X \rightarrow \omega$ such that for $x \in X$, if $x E x_{i}$ for some $i \in \omega$, then $\lim l_{n}(\vec{x}, x)$ exists and $x E x_{L(\vec{x}, x)}$ where $L(\vec{x}, x)=\lim l_{n}(\vec{x}, x)$.

Theorem

An equivalence relation E is non-uniformly learnable without false positives if and only if every equivalence class is $\boldsymbol{\Sigma}_{2}^{0}$.

Theorem

An equivalence relation E is non-uniformly learnable with false positives if and only if for every countable sequence \vec{x} there is a sequence of $\boldsymbol{\Sigma}_{\mathbf{2}}^{\mathbf{0}}$ sets $\left(S_{i}\right)_{i \in \omega}$ such that $\left[x_{i}\right] \subseteq S_{i}$ and $\left[x_{j}\right] \cap S_{i}=\emptyset$ for $i \neq j$.

