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LEARNING FROM INFORMANT

Gold (1961) considered the following application of inductive inference:

Given a fixed sequence of languages [, lo, ... an informant secretly fixes a language [; and at
every stage s, presents the learner with a new word wg € [;. The learner makes a guess

l(wo, ,ws) to identify the presented language. They learn the language if they correctly guess

in the limit, i.e, lim, l(wy, ... ,w,) = i.
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LEARNING FROM INFORMANT

Gold (1961) considered the following application of inductive inference:

Given a fixed sequence of languages [, lo, ... an informant secretly fixes a language [; and at
every stage s, presents the learner with a new word wg € [;. The learner makes a guess
l(wo, ,ws) to identify the presented language. They learn the language if they correctly guess

in the limit, i.e, lim, l(wy, ... ,w,) = i.
Fokina-Kotzing-San Mauro (2019) looked at this in a computable structure theory setting:

InfEx learning: Given a fixed sequence of countable pairwise non-isomorphic structures

Ay, A ..., the informant fixes an “example” B =2 A, and at stage s plays the substructure on
the first s elements of 5. Again the learner makes a guess [(B | s) and learns the family

Ay, Ay, ... ifforany A; and B = A, lim (B | s) =i.



FORMALIZING INFEX LEARNING

For given vocabulary 7 fix an enumeration ¢, (g, ... , ;) of the atomic 7-formulas and let the
atomic diagram of a 7-structure A with universe w be
1 ¢fzg...x; = 0...4]"

D(A)(i) = {

0 otherwise

Allows us to identify structures with elements of 2¢.

Definition
A pairwise non-isomorphic family of countable structures A, ... is InfEx learnable if there is a

function [ : 2<% — w such thatforanyiand B = A,, L(B) = lim (B | s) = i.



TWO THEOREMS

An infinitary formula  is 34 if it is of the form \{/ 3z; N\ VY, ;.5 where @, is quantifier-free.

Theorem (Bazhenov, Fokina, San Mauro 2020) .
A countable sequence Ay, ... is InfEx learnable if and only if there are 35* formulas ¢, such that

A; F ¢, and ./ljk-[goi fori # j.

A binary relation E on a Polish space X is continuously (Borel) reducible to Fon'Y, B <c(B) F
if there is a continuous (Borel) function f : X — Yst. forallz,y € X, zEyiff f(z)F f(y).

Theorem (Bazhenov, Cipriani, San Mauro 2023)
A countable sequence Ay, ... is InfEx learnable if and only if%(ﬂ_>§c E,.



LOCAL TO GLOBAL

1. The space of countable 7-structures Mod(7) is a Polish space.
2. Mod(T)/ = is not countable in non-trivial cases
3. InfEx learnability is a property of = on A, ...

What about = on the whole space or uncountable invariant subsets of Mod(T)?
Why restrict to = and not look at other equivalence relations on Polish spaces?

The investigation of these two questions is the goal of this project.



LEARNABILITY FOR EQUIVALENCE RELATIONS

- Consider w with the discrete topology and 2% with the product topology.

- The function L : 2% — w, L(A) = lim, I(A | s) is not continuous.

- The function I, : 2 — wl (A) = I(A | s) is continuous. So, L(A) = lim, I (A).
Definition
Let ¥ be an equivalence relation on a Polish space X and assume w is equipped with the
discrete topology. E'is uniformly learnable, or just learnable, if there are continuous functions
l,,: X“ x X > wsuchthatforz € Xand Z = (;),c, € X%, ifx E z; for some i € w,
then lim [, (%, ) exists and z E'x [,z . where L(Z, ) = lim[,,(Z, z).

1EW

If ]Z’ Z, then L might either diverge or converge to some 4. In the latter case we say that L

produces a false positive.



A BOREL CLASSIFICATION OF LEARNABLE EQUIVALENCE RELATIONS

Disclaimer: To avoid dealing with effective Polish spaces and make proofs easier we will assume
that we are working on 2%. Unless stated otherwise, all proofs work for arbitrary Polish spaces,
mutatis mutandis.

For a € 2“ we say that a learner L is a-computable if there is an a-recursive function

fiw— wsuchthatl, = ®% ) where (®;);¢,, is a canonical enumeration of Turing operators.

1EW
Theorem (RSS)
Fix a € 2“. An equivalence relation E on a Polish space X is learnable by an a-computable

learner if and only if it is 9 (a).



Proof. («<). Say F'is ¥:9(a), then there exists an a-recursive predicate R such that
x By < InVmR(x,y,n,m).

Define [ by

lS (57 ':E> -

pi < s[(In < s)(Ym < s)R(x,z;,m)] ifsuchi < s exists
S otherwise

Note that [ is recursive in a and that limg (%, x) = pj[z; E x], if such j exists. Otherwise

lim, I, (Z, z) T. Hence, L = lim [ does not produce false positives!

(=). Say E'is learnable by an a-computable learner L and consider arbitrary x,y € 2¢. We
will extract a Eg(a) definition using forcing. The main idea is that if we take a sufficiently
mutually (a, x, y)-generic sequence g, then the behaviour of the learner on L(z, y~g) is forced
by some condition P, and similarly for L(y, 2™ §). Using this P we can extract a ¥.9(a) formula

that is independent of &, y and defines E.



WARM-UP: FALSE POSITIVES

Lemma
If g, g is a sequence of sufficiently mutually generics relative to L and L(g, g) = k, then there

are p,p < g, g, such that L does not produce false positives for any h, h - D, P.

Proof.
Take g, g sufficiently L-generic. We have that L(g, g) 1= k iff In(VYm > n)l, . (g,§) = k. Let

ng be the least such n. Then the above statement must be forced by some P, D, e,
B,p Ik (Ym > 1)L, (3,9) =k
<= (VYm >n)(Yq,q¢ < ,p)(1,,,(q,9) L = 1,,(d,q) = k)

But then in particular L(h, h ... h;hh; o ...) = kwherei # k — 1 and i > |p| and h E hy,
as L cannot give false positives since h E h. O



(«<). say E'is learnable by an a-computable learner L and x E'y. Take g sufficiently mutually
(x,y,a)-generic and look at L(x,y"g), L(y,z"g). Say L(x,y"g) = 0, then by genericity
x,y satisfy the following formula:



(«<). say E'is learnable by an a-computable learner L and x E'y. Take g sufficiently mutually
(x,y,a)-generic and look at L(x,y"g), L(y,z"g). Say L(x,y"g) = 0, then by genericity
x,y satisfy the following formula:

Ing3IP(VG < P)(Vn > ng) (1L,(z,y°q) L = 1, (z,y"q) =0) (*)

Likewise if L(y,x~g) = 0 then

IngIp(Vq < P)(Yn > ng) (I (y,27¢) L = 1, (y,27q) =0) ()

If L(z, y”‘ﬁ) =g # 0and L(y,2"§G) =iy # 0,thenz E'g; ,y E g; , and this is forced by

some p* and p? andforanyh>p1 L(z,y™ h)—zo(sameforh>p )andeh YEh; .



Look at h > f)}o, h > Zp%l)oo. By transitivity of E, L(h, h) = k for some k and this is again
forced.
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Ing3Pg, P1Fig, i1 (V1 > ng) (VG < By) (L(z,y~ G, n) | = L(z,y~q,n) = i)
VTSP Lo dn) b = Lipadn) =i)
A3k(3r <B2)EF < pL ) (Y > ng) (Vg < r)(VG < 7)

If 2 E 1 then they satisfy (%), (%) or (% % ). If & Hy, they might still satisfy (x % %) if L(h, h)
gives false positives. But that cannot happen by our lemma. (%) V (%) V (x * %) define E.



EXAMPLES OF LEARNABLE EQUIVALENCE RELATIONS

- Eventual equality on 2*: z Ey y <= 3Im(Vn > m)z(n) = y(n)
- Eventual equality on 2¥%: (z;) E; (y;) <= Im(Vn >m)zx, =y
- The shift action of F}, on 252, E(F,,2).

n

Theorem (Bazhenov, Cipriani, San Mauro)
A countable sequence Ay, ... is InfEx learnable if and only if%(ﬂ_>§c E,.

- This characterization fails in our case, even for Borel reducibility, neither £, nor E(F2, 2)
are Borel reducible to E.

- It follows from the Feldman-Moore theorem that for any countable Borel equivalence
relation F, there is a topology such that E is Zg.



EXAMPLES OF LEARNABLE EQUIVALENCE RELATIONS

- Eventual equality on 2*: z Ey y <= 3Im(Vn > m)z(n) = y(n)
- Eventual equality on 2¥%: (z;) E; (y;) < Im(Vn >m)x, =y,
- The shift action of F}, on 252, E(F,,2).

Theorem (Bazhenov, Cipriani, San Mauro)
A countable sequence Ay, ... is InfEx learnable if and only if %(/ch E,.

- This characterization fails in our case, even for Borel reducibility, neither £, nor E(F2, 2)
are Borel reducible to E,.

- It follows from the Feldman-Moore theorem that for any countable Borel equivalence
relation F, there is a topology such that E is Zg.

Question: Is there a universal learnable equivalence relation for continuous or Borel reducibility?

This question (with Eg) seems to be open for many years.



EXAMPLE: ISOMORPHISM RELATIONS

By a result of Arnie Miller ('83), no structure can have a Zizn Scott sentence, i.e., for no A, [A]~ is

X9, This implies that 2 in a vocabulary 7 cannot be 39.

Proposition
Let T be a countable vocabulary. Then Mod(T) is not learnable.

If we restrict to structures satisfying a fixed Lwlw sentence ¢, we can find examples of learnable

structures.

Example: Let ¢ axiomatize torsion free Abelian groups of rank 1, then =< is learnable.

o
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COMPLEXITY OF LEARNING

- Represent Eg relations using Borel codes. (Well-founded infinitely branching trees labeled
with U, N, and codes for finite intersections of basic open sets)

- These codes can be coded by elements of 2¢.
- How complicated is the set of codes of learnable Borel equivalence relations?



COMPLEXITY OF LEARNING

- Represent Eg relations using Borel codes. (Well-founded infinitely branching trees labeled
with U, N, and codes for finite intersections of basic open sets)
- These codes can be coded by elements of 2¢.
- How complicated is the set of codes of learnable Borel equivalence relations?
Theorem (Louveau 1980)
If X is a recursive Polish space, Ay, A; € ¥1, Ay N Ay = D st. thereis B € ¥2 with A, C B
and A; N B = (), then B can be taken in X2 (HY P).

Lemma
If Eis A% and learnable, then it is learnable by a hyperarithmetical learner.

Proof sketch.
By Louveau’s separation theorem, if F'is Zg and A%, then it is Eg(HYP). Thus by our theorem,

it is learnable by a hyperarithmetical learner. O



Lemma
The set of codes of learnable Borel equivalence is H%.

Proof sketch.
T codes a learnable equivalence relation iff (1) T'is well-founded, (2) its labeling is correct, and (3)

there is a learner learning Ev. The first statement is 13, the second arithmetical and the third
can be replaced by (3') there is a learner hyperarithmetical in T by the above Lemma. By the

Spector-Gandy theorem, (3') is H%. O



Lemma
The set of codes of learnable Borel equivalence is H%.

Proof sketch.
T codes a learnable equivalence relation iff (1) T'is well-founded, (2) its labeling is correct, and (3)

there is a learner learning Ev. The first statement is 13, the second arithmetical and the third
can be replaced by (3') there is a learner hyperarithmetical in T by the above Lemma. By the
Spector-Gandy theorem, (3') is H%. O

Theorem (RSS)
The set of learnable Hg equivalence relations on 2% is H% complete in the codes.

Proof sketch.
Use the fact that the set of well-founded trees in w<% is l’[% complete and that

Inf = {x €2¥:|dom(z)| = 0o} is II complete. For z € Inf let p, be the principal

function of x and define E-as
tEry <= v =yV (p, 0y, €[T] N2y, € Inf)

If T'is well-founded, E'p = id. Otherwise fix x € [T'], E can't be learnable since then



ALTERNATIVE DEFINITION: BOREL LEARNABLE

Definition
Let E' be an equivalence relation on a Polish space X and assume w is equipped with the

discrete topology. F is uniformly Borel learnable, or just Borel learnable, if there are Borel
functions I, : X x X — wsuchthatforz € X and Z = (x;);c, € X*, ifx E x; for some
i € w,thenlim/, (Z,z) existsand x Expz ,,) where L(Z, z) = lim [, (Z, z).

1EW

Borel learnability is connected to uniform learnability via the following classic fact:

Theorem

For Polish spaces (X, o), Y and a Borel function f : X — Y, there exists a topology T 2 o of
X such that B((X, 7)) = B((X,0)) and f : X — Yis 7-continuous.

Proposition
An equivalence relation E is on X is Borel learnable if and only if there exists a refinement of the

topology on X such that E is uniformly learnable.



ALTERNATIVE DEFINITION: NON-UNIFORM LEARNABILITY

Definition
Let E' be an equivalence relation on a Polish space X and assume w is equipped with the

discrete topology. We say that E is non-uniformly learnable, if for every & = ()¢, € X¥
there are continuous functions [,, : X% x X — wsuch thatforx € X, if x E' z,; for some

i € w,then lim/(, (%, z) exists and @ E x 3 ,) where L(Z, ) = lim [, (Z, z).

Theorem

An equivalence relation E'is non-uniformly learnable without false positives if and only if every
equivalence class is Eg.

Theorem

An equivalence relation E' is non-uniformly learnable with false positives if and only if for every
countable sequence  there is a sequence of 29 sets (.S;),c,, such that [z;] C S; and

[z;]NS; =0 fori # j.



