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Structural complexity of countable models

Goal: Measure how complicated models of Peano arithmetic are structurally.
- How hard is it to identify elements of a model of PA (up to automorphism)?
- How complicated is it to define an isomorphism given two isomorphic models of PA?

- How complicated is it to identify structures isomorphic to a given structure among other
countable structures?

It is easy to answer this questions for the standard model IN: It is structurally easy.
But what about non-standard models?

Let us give a framework to answer this questions.



Quantifier complexity in L, ,

1. Aformula is 3" = TI? if it is a finite quantifier free formula.

2. Aformulais X for @ > 0, if it is of the form \)(/Z,Ew x4, (z;) where all ¢, € Hgl for

3. Aformula is I for o > 0, if it is of the form /)(\iew vz, (x;) where all ¢, € Egl for
— in

4 Ly, = an1 I

For example, let p,, denote the (formal term) for the nth prime in PA and let X C w. Then

o =3z (/X\Hy(y-pnZ:E)A/)(\Vy(y-pn#w))

neX n¢X

isa X formula and A F ¢ iff X is in the Scott set of A.



Towards a formal framework

Theorem (Scott 1963)
For every countable structure A there is a sentence in the infinitary logic Lwlw - its Scott sentence -

characterizing A up to isomorphism among countable structures.



Towards a formal framework

Theorem (Scott 1963)
For every countable structure A there is a sentence in the infinitary logic Lwlw - its Scott sentence -

characterizing A up to isomorphism among countable structures.

The proof heavily relies on the analysis of the a-back-and-forth relations for countable ordinals .

The most useful definition is due to Ash and Knight:

Definition
1. (A,a) <, (B,Db) ifall atomic fromulas true of b are true of @ and vice versa.
2. Fornon-zero y < wy, (A, a) <, (B, b) ifforall B < yand d € B<* thereis ¢ € A<¥
such that (B, bd) <p (A, ac).



Towards a formal framework

Theorem (Scott 1963)
For every countable structure A there is a sentence in the infinitary logic Lwlw - its Scott sentence -

characterizing A up to isomorphism among countable structures.
The proof heavily relies on the analysis of the a-back-and-forth relations for countable ordinals .
The most useful definition is due to Ash and Knight:

Definition

1. (A,a) <, (B,Db) ifall atomic fromulas true of b are true of @ and vice versa.
2. Fornon-zero y < wy, (A, a) <, (B, b) ifforall B < yand d € B<“ thereis¢ € A<%
such that (B, bd) <p (A, ac).

In an attempt to measure structural complexity, various notions of ranks have been used.

Eg r(A) is the least a such that forall a, b € Aifa <, b, then a <z b for all B> a.



A robust Scott rank

Theorem (Montalban 2015)
The following are equivalent for countable A and o < wy.

Every automorphism orbit of A is Egj—deﬁnable without parameters.

A has a TI' | Scott sentence.
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Every automorphism orbit of A is Egj—deﬁnable without parameters.

A has a TI' | Scott sentence.

A is uniformly A% -categorical. (A3PIXVB =~ € =~ A(@XGB(@EBB)(M : B~E)
Iso(A)isTI? .

No tuple in A is a-free.
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The least «v satisfying the above is the (parameterless) Scott rank of A.
Recently, an even more fine-grained notion has received some interest.

Definition

The Scott complexity of a structure A is the least complexity among ¥ TT'®, and d-X2 of a Scott

sentence for A.

This notion is even more robust than the above as it corresponds to the Wadge degree of the
isomorphism class of A (A. Miller 1983, AGH-TT).



Connection to <,

Theorem (Ash, Knight)
For two countable structures A the following are equivalent.

1 (A,a) <, (B,b).
2. All X1 sentences true of b in B are true of a in A.
3. All TI™® sentences true of a in A are true of b in B.

In other words, (A, a) <, (B,b) if II2-tp#(a) C TI2-tp® (b).



Connection to <,

Theorem (Ash, Knight)
For two countable structures A the following are equivalent.

1 (A,a) <, (B,b).
2. All X' sentences true of bin B are true of a in A.
3. All TI™® sentences true of a in A are true of bin B.
In other words, (A, a) <, (B,b) if II2-tp#(a) C TI2-tp® (b).

Definition
Atuple a in A is a-free if

V(B < a)VbIa'b'(ab <z a'b' ANa £, @)
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Scott ranks in classes of structures

Definition (Makkai 1981)
The Scott spectrum of a theory T'is the set

SS(T) = {a € wy : there is a countable model of T'with Scott rank a}.

Here T'might be a sentence in L, .

- Ash (1986) characterized back-and-forth relations of well-orderings. The following is a corollary:
SR(n) =1, SR(w®*) = 2a, SR(w* + w®) =2 + 1.

. SS(LO) = w, — 0

- The standard model N of P A has Scott rank 1: Every element is the nth successor of O for some n € w,
50 the automorphism orbits are definable by s(s(... (0) ...)) = .

- 1€ SS(PA)



Formalizing back-and-forth relations

Throughout this talk M and N denote countable non-standard models of PA.

Recall that M -finite sets can be coded by single elements, i.e., given S Qfm M code it using
ZSGS 2% Thus finite strings w € M <% can be considered as the M -finite set

{@@,u(i)) : i < |ul}.



Formalizing back-and-forth relations

Throughout this talk M and N denote countable non-standard models of PA.

Recall that M -finite sets can be coded by single elements, i.e., given S Qfm M code it using
ZSGS 2% Thus finite strings w € M <% can be considered as the M -finite set

{@@,u(i)) : i < |ul}.

Let TTA? be a truth predicate for bounded formulas and define the formal back-and-forth relations
by induction on n:

u<g§ v V(z<a)(Trao(z,u) = Trao(z,v))

a <0y 06 Vi3g(|al <a— (5] < anad <3 7))



Formalizing back-and-forth relations

Proposition ,
The formal back-and-forth relations <I satisfy the following properties for all n:

1. PAFVu,v,a,b((a <bAu <l v) = u<0)
2. PAFVu,0,a(a <2 40— u <% 0)

Proposition B s
leta,b € M. Thena <, b< V(m € w)M Ea <] b. Furthermore, if there is ¢ € M — N such

that M E @ <& b, thena <, b.
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Back-and-forth and types

Lemma N B 3
Foreverya,b € M=% a <, bifand only iftp(a) = tp(b).

Recall that M is homogeneous if every partial elementary map M — M is extendible to an
automorphism.

Lemma
If M is not homogeneous then SR(M) > w.



Homogeneous models

Proposition

If M is homogeneous, then SR(M) < w + 1.

Note that every completion T"of P A has an atomic model. Take M C T and the subset of all
Skolem terms without parameters. This is an elementary substructure and all types are isolated. By
the least number principle this model is rigid and its automorphism orbits in M are singletons.

Theorem (Montalban, R.)
If M is atomic, then SR(M) = w.

Theorem (Montalban, R.)
For any nonstandard model M, SR(M) > w. In particular (1,w) N SS(PA) =0.If T O PA

does not have a standard model, then 1 ¢ S.S(T).

1
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Infinitary Interpretability

In order to obtain a characterization of the set of possible Scott ranks, a first try is to see if there is a

reduction from linear orders to models of PA.

Definition (Harrison-Trainor, R. Miller, Montalban 2018)

A structure 4 = (A, POA, ... ) Is infinitary interpretable in B if there exists a Lwlw definable in B sequence
of relations (Domzjl7 ~, Ry, ...) such that

1. Domg C B,
2. ~isan equivalence relation on Domfl,
3. R, C (B<¥)“Fi is closed under ~ on Domffl,

and there exists a function fif : (DomZ%, Ry, ...)/~ =2 (A, Ps*,...), the interpretation of A in . If the
formulas in the interpretation are A then A is A interpretable in B.



Bi-interpretability and Automorphism groups

Definition (Harrison-Trainor, R. Miller, Montalban 2018)
Two structures A and B are bi-interpretable if there are infinitary interpretations of one in the other

such that the compositions
Ao B . D Dom B BofA. D Dom A
fz o fa:Domyg — and  fy o f7 : Dom 4 —

are inf. definable in 3B and A respectively.

Theorem (Harrison-Trainor, R. Miller, Montalban 2018)

A and B are infinitary bi-interpretable iff their automorphism groups are Baire-measurably
isomorphic.

Theorem (Harrison-Trainor, R. Miller, Montalban 2018)

A structure A is A interpretable in B iff there is a functor F' : Iso(B) — Iso(A) where the
operators ® : Iso(B) — Iso(A) and ®, : Hom(B) — Hom(A) are AY.

If A and B are bi-interpretable by A formulas, then SR(A) = SR(B). If that is not the case,
the storv is not that clear.



Gaifman’s Theorem

Theorem (Gaifman 1976)
Let T'be a completion of PA and £ a linear order. Then there is a model N . of T'such that

Aut(N ;) = Aut(£).

- A cut of a model M is a non-empty initial segment of M closed under successor.
- N is an end-extension of M if M <X N and M is a cut of V.
- N is a minimal extension of M if there is no X with M < KX < N.

Theorem (Gaifman 1976)
Let M be any model of PA, then M has a minimal end extension.

14



L-canonical extension

The minimal end extension is obtained by taking M (a), the Skolem hull of M with a new element a
having type p(x) where

- p(x) is indiscernible: for I C M with every i € I having type p(z) and ordered sequences
a,b € I<¥ tp(a) = tp(b),
- p(z) is unbounded: there is no Skolem constant ¢ such that x < ¢ € p(z).

The version of Gaifman’s theorem above is obtained by taking an .£-canonical extension for given £
over the prime model NV, i.e, take an indiscernible, unbounded type p(ac) and construct the model

Ng= U N(l1>(l2)---(l|l|>

<<l el

This construction gives a functor F' : LO — Mod(T). The functor is computable relative to 1" This
is equivalent to having that for any £, N  is A? interpretable in L.

We still need to recover £ from N - to obtain a bi-interpretation



Mind the gap

Definition
Fix M F PA and let F be the set of definable functions f : M — M for which

x < f(z) < f(y) whenever x < y. Forany a € M let gap(a) be the smallest set S with a € S
andandifb € S, f € F,andb <z < f(b)orx <b< f(z) thenz € S.

Define a = basa = b < a € gap(b). The gap relation partitions M into intervals.

Theorem (Gaifman 1976)
- Ifa € gap(b) and a, b both realize the same minimal type p(x), then a = b.
0 Nz/:g is order isomorphic to 1 + £.

So we can interpret £ in NV, using the interpretation given by

aeDomf\/ﬁ(:)tp(a):p(x) a~bsa=b a<besa<Ncp
mn A9 A9




Properties of the interpretation

- N, is Altinterpretable in £
- Lis A, interpretable in NV ,
- Land N ; are A, bi-interpretable

- The interpretation is "asymmetric”.

What could be the reason for that? It turns out we can interpret a lot more than NV . in £!



The structural a-jump

Say that a type p(f) consisting of formulas in some class I' is sharply realized in K if there is a
structure A € Rand a € A< such that p(Z) = tp 4(a) N T.

Definition

Let A be a structure in a vocabulary 7and let (pz) be a listing of the sharply realized ng types

1EW
in A. The canonical structural cc-jump A<a> is the structure obtained by adding relation symbols
(R;);c. to Tsuch that

G R & AF [N\ 0@

PED;



The structural a-jump

Say that a type p(j) consisting of formulas in some class I' is sharply realized in K if there is a
structure A € Rand a € A< such that p(Z) = tp 4(a) N T.

Definition

Let A be a structure in a vocabulary 7and let (pz) be a listing of the sharply realized ng types

1EW
in A. The canonical structural cc-jump A<a> is the structure obtained by adding relation symbols
(R;);c. to Tsuch that

G R & AF [N\ 0@

PED;

Proposition B
For nonzero i, B < wy then (A o), a) <g (A(q),b) < (A,a) <1 (A,b). In particular
SR(A) =a+ BifSR(A) = 0.

- Recall thata <, b iff every [T formula true of a is true of b.
- We showed that @ <_, bifftp(a) = tp(b). 8



Revisiting the bi-interpretation

Theorem (Montalban, R.)
For every completion T'of P A and every linear order £, there is N  F T'such that £ and (N ) 4

are Ail“ bi-interpretable.

Corollary (Montalban, R.)
Let T'be any completion of PA, then SS(T) = {1} U{a:w < a <w;}
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Revisiting the bi-interpretation

Theorem (Montalban, R.)
For every completion T'of P A and every linear order £, there is N  F T'such that £ and (N ) 4

are Ail“ bi-interpretable.

Corollary (Montalban, R.)
Let T'be any completion of PA, then SS(T) = {1} U{a:w < a <w;}

This result led us to the following result about structural jumps:

Theorem (Montalban, R.)
The following are equivalent.

1. A is AT bi-interpretable with B .
2. A is infinitary bi-interpretable with B where the interpretation of A in B and féfl o fﬁ are

Agﬂrl, and, the interpretation of B in A and fﬁ o féfl are Ailn.

19



Theorem (Montalban, R.)
1. SS(PA)=1U{a:w<a<w}
2. If M is non-homogeneous, then SR(M) > w + 1.
3. If M is non-standard atomic, then SR(M) = w.
4. If M is non-standard homogeneous, then SR(M) € [w,w + 1].
5. For any completion T of P A, there is a T-computable model M with SR(M) = w¥ + 1.

20



Theorem (Montalban, R.)
1. SS(PA)=1U{a:w<a<w}
2. If M is non-homogeneous, then SR(M) > w + 1.
3. If M is non-standard atomic, then SR(M) = w.
4. If M is non-standard homogeneous, then SR(M) € [w,w + 1].
5. For any completion T of P A, there is a T-computable model M with SR(M) = w¥ + 1.

Thank you!
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