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Goal: Measure how complicated models of Peano arithmetic are structurally.
- How hard is it to identify elements of a model of PA (up to automorphism)?
- How complicated is it to define an isomorphism given two isomorphic models of PA?

- How complicated is it to identify structures isomorphic to a given structure among other
countable structures?

It is easy to answer this questions for the standard model IN: It is structurally easy.
But what about non-standard models?

Let us give a framework to answer this questions.
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TOWARDS A FORMAL FRAMEWORK

Theorem (Scott 1963)
For every countable structure A there is a sentence in the infinitary logic Lwlw - its
- characterizing A up to isomorphism among countable structures.

The proof heavily relies on the analysis of the a-back-and-forth relations for countable ordinals c.
The most useful definition is due to Ash and Knight:

Definition

1. (A, a) <y (B,b) if all atomic fromulas true of b are true of @ and vice versa.
2. Fornon-zeroy < wy, (A, a) <, (B,b)ifforall B < yandd € B=“ thereisc € A~
such that (B, bd) <5 (A, ac).
In an attempt to measure structural complexity, various notions of ranks have been used.

Eg r(A) is the least a such that for all a,be Aifa <, b, then a <z bforall 8> a.



QUANTIFIER COMPLEXITY IN L, ,

1. Aformula is 3" = TI? if it is a finite quantifier free formula.

2. Aformulais X for @ > 0, if it is of the form \)(/Z,Ew x4, (z;) where all ¢, € Hgl for

3. Aformula is I for o > 0, if it is of the form /)(\iew vz, (x;) where all ¢, € Egl for
— in

4 Ly, = an1 I

For example, let p,, denote the (formal term) for the nth prime in PA and let X C w. Then

o =3z (/X\Hy(y-pnZ:E)A/)(\Vy(y-pn#w))

neX n¢X

isa X formula and A F ¢ iff X is in the Scott set of A.
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Theorem (Montalban 2015)

The following are equivalent for countable A and o < wy.
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The least «v satisfying the above is the of A.

The standard model N of P A has Scott rank 1: Every element is the nth successor of O for some

n € w, so the automorphism orbits are definable by s(s(... (0)...)) = .
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Theorem (Karp)

For two countable structures A the following are equivalent.

1. (Aya) <, (B,B). )
2. All X1 sentences true of b in B are true of a in A.
3. All TI™™ sentences true of a in A are true of b in B.

In other words, (A, a) <, (B,b) if II2-tp#(a) C TI2-tp® (b).

Definition
Atuple ain A is if

V(B < a)VbIa'b' (ab <ga'b' ANa £, a@').
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SCOTT RANKS IN CLASSES OF STRUCTURES

Definition (Makkai 1981)
The of a theory T'is the set

SS(T) = {a € wy : there is a countable model of T'with Scott rank ar}.

Here T'might be a sentence in L, .

- Ash (1986) characterized back-and-forth relations of well-orderings. The following is a corollary:
SR(n) =1, SR(w®) = 2a, SR(w* + w®) =2+ 1.

. SS(LO) = w, — 0
. 1€ SS(PA)



FORMALIZING BACK-AND-FORTH RELATIONS

Throughout this talk M and N denote countable non-standard models of PA.

- Back-and-forth relations accept tuples of arbitrary length.
- Makes it impossible to formalize in first order logic.
- In PA we can talk about being n-bf equivalent up to some length a of tuples for a € M.

Let TTA? be a truth predicate for bounded formulas and define the bounded back-and-forth
relations by induction on n:

u<g§ v V(z<a)(Trao(z,u) = Trao(z,v))

a0y 06 Vi3g(|al <a— (5] < an@w <5 @p))



FORMALIZING BACK-AND-FORTH RELATIONS

Proposition

The bounded back-and-forth relations <¥ satisfy the following properties for all n:
1. PAFVu,v,a,b((a <bAu<bv)—u<lo)
2. PAF Vu,v,a(u <pi1 U —>u<p )

Proposition
leta,b € M. Thena <, b< ¥ (m € w)M E a <" b. Furthermore, if there is c € M — N
such that M F a <, b thena <, b.
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BACK-AND-FORTH AND TYPES

Lemma

Forevery a,b € M<*, a <_ bif and only if tp(a) = tp(b).

Recall that M is if every partial elementary map M — M is extendible to an
automorphism.

Lemma
If M is not homogeneous then SR(M) > w.



HOMOGENEOUS MODELS

Proposition
If M is homogeneous, then SR(M) < w + 1.

Note that every completion 1" of P A has an atomic model. Take M C T and the subset of all
Skolem terms without parameters. This is an elementary substructure and all types realized are
isolated. By the least number principle this model is rigid and its automorphism orbits in M are
singletons.

Theorem (Montalban, R.)

If M is atomic, then SR(M) = w.

Theorem (Montalban, R.)
For any nonstandard model M, SR(M) > w. In particular (1,w) N SS(PA) =0.IfT O PA
does not have a standard model, then 1 ¢ S.S(T).

1
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INFINITARY INTERPRETABILITY

In order to obtain a characterization of the set of possible Scott ranks, a first try is to see if there is a
reduction from linear orders to models of PA.
Definition (Harrison-Trainor, Miller, Montalban 2018)

Astructure A = (A, Py, ... ) is in B if there exists a L, ,, definable in B
sequence of relations (Domfl7 ~, Ry, ...) such that

1. Domfl C g
2. ~is an equivalence relation on Domfl,
3. R; C (B<“)"7i is closed under ~ on Dom?,

and there exists a function fi : (Dom?%, Ry, ...)/~ 2 (A, Ps*,...), the . If the
formulas in the interpretation are Al then A is Al interpretable in B.
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BI-INTERPRETABILITY AND AUTOMORPHISM GROUPS

Definition (Harrison-Trainor, Miller, Montalban 2018)
Two structures A and B are if there are infinitary interpretations of one in the

other such that the compositions

D

- z - Dom
féfl o fff 3 Domgom‘/‘ — B and fﬁ o féfl g Domﬂomﬁ — A

are inf. definable in B and A respectively.

Theorem (Harrison-Trainor, Miller, Montalban 2018)
A and B are infinitary bi-interpretable iff their automorphism groups are Borel-measurably

isomorphic.
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Theorem (Gaifman 1976)
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GAIFMAN'S THEOREM

Theorem (Gaifman 1976)
Let T'be a completion of PA and £ a linear order. Then there is a model N  of T such that

Aut(N ;) = Aut(L).

- Indiscernible construction with a p(x).
- Foreveryl; < - <, € L obtainamodel N(l;) ... (I,,) where each [; realizes p(x).
- Take the direct limit of all these models to be NV .
- The proof is essentially a Henkin construction.
- The elementary diagram of NV . is Ailn interpretable in £
Theorem (cf. Gaifman)
({z € Ny :aFpla)}, <Ne) =L
Thus, L is Af} , interpretable in V .. (As the universe is Hi:}.)

+
14
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A BI-INTERPRETATION

- Land N ; are A | bi-interpretable

- The complexities are asymmetric
- The elementary diagram of V ; is Al interpretable in £
- Lis A% | interpretable in NV

What could be the reason for that? It turns out we can interpret even more in !

Definition
Given a T-structure A and a countable ordinal a > 0 fix an injective enumeration (a;),c,, of the
«-back-and-forth equivalence classes. The ./l<a) of A is the structure

in the vocabulary T(a) obtained by adding to 7 relation symbols R, interpreted as
— A _ —
beR, () Sa; <, b.

We will use the convention that A ) = A.
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PROPERTIES OF THE STRUCTURAL (x-JUMP

Proposition

Let A be a structura and o, B < wy with B > 0. Then
("4(@)7&) SB ("4(04)’ b) ~ ("4’ &) §a+6 ("47b>

Corollary

For any structure A and non-zero a, B < wy, SR(A) = a+ Bifand only if SR(A ) =

Recall that two AP bi-interpretable structures have the same Scott rank. So if B is Al
bi-interpretable with A, then SR(A) = a + SR(3B).



BI-INTERPRETATIONS AND THE STRUCTURAL (x-JUMP

Corollary
For all countable ordinals ¢ and 3, the following are equivalent.

1. A, is AT bi-interpretable with B,

2. A is infinitary bi-interpretable with B such that
21 the interpretation of A in B and f# o fﬁ are A", in B,

22 the interpretation of B in A and fﬁ ° fg{ are A;“H in A,

23 foreverya € Dom?%, {¢: (A%, ¢) F Hi;l—tpﬂﬂ(’ )}is Al | definable in B,
B4 is Am definable in A.
4l

24 forevery b € Domy, {¢: (B4, ¢) F II"-tp

Recall that V  is A" interpretable in £ and £ is A, ; interpretable in V .. Hence, taking
A = Land B =N ., 21,22 are satisfied for &« = w, v = 0. It remains to show that the elements

satisfying a fixed Hi:}—type in NV, are both Ailn definable in £.
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REVISITING GAIFMAN’S REDUCTION

Recall that the elementary diagram of V , is interpetable in £ and that
{bETI"tp(a)} = {bE tp(a)} forany a. The sets {b k tp(a)} are IT* definable in £

To show that it is also T} definable notice that the following claim holds.

Lemma

Let s be a Skolem term and a = s(l, ..., L) wherely < --- <l € L. Ifb = s(kq,...,k,) for
some ky < -+ <k, € LthenbF tp(a).

Thus every set {b F tp(@)} can be written as a union of Skolem terms with parameters ordered
L-tuples. Thus, the set is Hlln definable.

Theorem (Montalban, R.)

Given a completion T of P A, there is a reduction via Ailn bi-interpretability between £ and the

structural w-jumps of its models.



SUMMARY

Theorem (Montalban, R.)

SS(PA)=1U{a:w<a<w}

If M is non-homogeneous, then SR(M) > w + 1.

If M is non-standard atomic, then SR(M) = w.

If M is non-standard homogeneous, then SR(M) € [w,w + 1].

For any completion T of P A, there is a T-computable model M with SR(M) = wi + 1.

@igs WY =
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