Structural complexity notions for foundational theories

Dino Rossegger
Technische Universität Wien
KGRC Logic Seminar

NON-STANDARD MODELS OF ARITHMETIC

What do nonstandard models of $\operatorname{Th}(\mathfrak{N})$ or $\operatorname{Th}\left(\mathfrak{N}^{<}\right)$look like? In the following we gain some insight into the order structure of a nonstandard model $\mathfrak{2 l}$ of $\mathrm{Th}\left(\mathfrak{N}^{<}\right)$(and hence also into the structure of a nonstandard model of $\mathrm{Th}(\mathfrak{\Re})$; cf. Exercise 4.9).
In $\mathfrak{N}^{<}$the sentences

$$
\begin{aligned}
& \forall x(0 \equiv x \vee 0<x), \\
& 0<1 \wedge \forall x(0<x \rightarrow(1 \equiv x \vee 1<x)), \\
& 1<\mathbf{2} \wedge \forall x(1<x \rightarrow(2 \equiv x \vee 2<x)), .
\end{aligned}
$$

hold. They say that 0 is the smallest element, 1 the next smallest element after 0,2 the next smallest element after 1 , and so on. Since these sentences also hold in \mathfrak{A}, the "initial segment" of \mathfrak{A} looks as follows:

In addition, A contains a further element, say a, since otherwise \mathfrak{A} and $\mathfrak{N}<$ In addition, A contains a further element, say a, since otherwise \mathfrak{A} and \mathfrak{N}
would be isomorphic. Furthermore, $\mathfrak{N}^{<}$satisfies a sentence φ which says that for every element there is an immediate successor and for every element other than 0 there is an immediate predecessor. From this it follows easily that A contains, in addition to a, infinitely many other elements which together with a are ordered by $<^{A}$ like the integers:

$$
\begin{array}{rlll}
& 1 & & \\
0^{A} & 1^{A} & 2^{A}
\end{array} \quad<\cdots>+\frac{1}{a}+\cdots>
$$

If we consider the element $a+{ }^{A} a$ we are led to further elements of A :

The reader should give a proof of this and also verify that between every two copies of $(\mathbf{Z},<)$ in \mathfrak{A} there lies another copy.
The examples in this and the previous section show that there are imThe examples in this and the previous section show that in first-order
portant classes of structures which cannot be axiomatized portant classes of structures which can of expressive power also has pleaslogic. On the other hand, this weakness of expressive power also has pleas-
ant consequences. For example, the argument establishing that the class ant consequences. For example, the argument establishing that the class of archimedean fields is not axiomatizable yields a proof of the existence of non-archimedean ordered fields; and the fact that the class of fields of characteristic 0 cannot be axiomatized by means of a single $S_{\text {ar }}$-sentence is complemented by the interesting result 3.3 . Using similar meth $\Re^{<}$of real obtain structures elementarily equivalent to the ordered field

Ebbinghaus, Flum, Thomas - Mathematical Logic

NON-STANDARD MODELS OF ARITHMETIC

What do nonstandard models of $\operatorname{Th}(\mathfrak{N})$ or $\operatorname{Th}\left(\mathfrak{N}^{<}\right)$look like? In the following we gain some insight into the order structure of a nonstandard model \mathfrak{A} of $\operatorname{Th}\left(\mathfrak{N}^{<}\right)$(and hence also into the structure of a nonstandard model of $\mathrm{Th}(\mathcal{N})$; cf. Exercise 4.9).
In $\mathfrak{N}^{<}$the sentences

$$
\begin{aligned}
& \forall x(\mathbf{0} \equiv x \vee 0<x), \\
& \mathbf{0}<\mathbf{1} \wedge \forall x(\mathbf{0}<x \rightarrow(\mathbf{1} \equiv x \vee \mathbf{1}<x)), \\
& \mathbf{1}<\mathbf{2} \wedge \forall x(\mathbf{1}<x \rightarrow(2 \equiv x \vee \mathbf{2}<x)),
\end{aligned}
$$

hold. They say that 0 is the smallest element, 1 the next smallest element after 0,2 the next smallest element after 1 , and so on. Since these sentences also hold in \mathfrak{A}, the "initial segment" of \mathfrak{A} looks as follows:

In addition, A contains a further element, say a, since otherwise \mathfrak{A} and $\mathfrak{N}^{<}$ In addition, A contains a further element, say a, since otherwise \mathfrak{A} and \mathfrak{R}
would be isomorphic. Furthermore, $\mathfrak{N}^{<}$satisfies a sentence φ which says that for every element there is an immediate successor and for every element other than 0 there is an immediate predecessor. From this it follows easily that A contains, in addition to a, infinitely many other elements which together with a are ordered by $<^{A}$ like the integers:

$$
\begin{array}{|cccc}
0^{A} & 1^{A} & 2^{A}
\end{array} \cdots \ggg+\cdots>
$$

If we consider the element $a+{ }^{A} a$ we are led to further elements of A :

$$
\begin{array}{llll}
0^{A} & 1^{A} & 2^{A}
\end{array} \cdots><\cdots+\frac{1}{a}+\cdots><\cdots+\frac{1}{a+A_{a}}
$$

The reader should give a proof of this and also verify that between every two copies of $(\mathbf{Z},<)$ in \mathfrak{A} there lies another copy.
The examples in this and the previous section show that there are important classes of structures which cannot be axiomatized in first-order portant classes of structures which cancer on the other hand, this weakness of expessive power also has pleas-
logic ant consequences. For example, the argument establishing that the class of archimedean fields is not axiomatizable yields a proof of the existence of non-archimedean ordered fields; and the fact that the class of fields of characteristic 0 cannot be axiomatized by means of a single $S_{\text {ar }}$-sentence is complemented by the interesting result 3.3 . Using similar methods, one can obtain structures elementarily equivalent to the ordered field $\Re^{<}$of real

- How complicated are the non-standard elements? Definability of automorphism orbits

Ebbinghaus, Flum, Thomas - Mathematical Logic

NON-STANDARD MODELS OF ARITHMETIC

What do nonstandard models of $\operatorname{Th}(\mathfrak{N})$ or $\operatorname{Th}\left(\mathfrak{N}^{<}\right)$look like? In the following we gain some insight into the order structure of a nonstandard model $\mathfrak{2 l}$ of $\mathrm{Th}\left(\mathfrak{N}^{<}\right)$(and hence also into the structure of a nonstandard model of $\mathrm{Th}(\Re)$; cf. Exercise 4.9).
In $\mathfrak{N}^{<}$the sentences

$$
\begin{aligned}
& \forall x(0 \equiv x \vee 0<x), \\
& 0<\mathbf{1} \wedge \forall x(\mathbf{0}<x \rightarrow(1 \equiv x \vee 1<x)), \\
& \mathbf{1}<\mathbf{2} \wedge \forall x(1<x \rightarrow(2 \equiv x \vee \mathbf{2}<x)),
\end{aligned}
$$

hold. They say that 0 is the smallest element, 1 the next smallest element after 0,2 the next smallest element after 1 , and so on. Since these sentences also hold in \mathfrak{A}, the "initial segment" of \mathfrak{A} looks as follows:

In addition, A contains a further element, say a, since otherwise \mathfrak{A} and $\mathfrak{N}^{<}$ would be isomorphic. Furthermore, $\mathfrak{N}^{<}$satisfies a sentence φ which says that for every element there is an immediate successor and for every element other than 0 there is an immediate predecessor. From this it follows easily that A contains, in addition to a, infinitely many other elements which together with a are ordered by $<^{A}$ like the integers:

$$
\begin{array}{rlll}
0^{A} & 1^{A} & 2^{A}
\end{array} \cdots \ggg+\cdots>
$$

If we consider the element $a+{ }^{A} a$ we are led to further elements of A :

$$
\left.\stackrel{0^{A}}{ } 1^{A} \frac{2}{2}^{A} \cdots><\frac{1}{a}+\cdots\right\rangle<\cdots+\frac{1}{a+{ }_{a}^{A}}
$$

The reader should give a proof of this and also verify that between every two copies of $(\mathbf{Z},<)$ in \mathfrak{A} there lies another copy.
The examples in this and the previous section show that there are imThe examples in this and the previous section show that the irst-order
portant classes of structures which cannot be axiomatized in fir logic. On the other hand, this weakness of expressive power also has pleasant consequences. For example, the argument establishing that the class of archimedean fields is not axiomatizable yields a proof of the existence of non-archimedean ordered fields; and the fact that the class of fields of characteristic 0 cannot be axiomatized by means of a single $S_{\text {ar }}$-sentence is complemented by the interesting result 3.3. Using similar methods, one can obtain structures elementarily equivalent to the ordered field $\Re^{<}$of real obtain structures elementarily equivalent to the orderers, infinitely large

- How complicated are the non-standard elements?

Definability of automorphism orbits

- How difficult is it to distinguish non-standard models of arithmetic? Borel complexity of isomorphism classes
\Uparrow Scott analysis \uparrow

Ebbinghaus, Flum, Thomas - Mathematical Logic

NON-STANDARD MODELS OF ARITHMETIC

What do nonstandard models of $\operatorname{Th}(\mathfrak{N})$ or $\operatorname{Th}\left(\mathfrak{N}^{<}\right)$look like? In the following we gain some insight into the order structure of a nonstandard model 2 of $\operatorname{Th}\left(\Re^{<}\right)$(and hence also into the structure of a nonstandard model of $\mathrm{Th}(\mathfrak{F})$; cf. Exercise 4.9).
In $\mathfrak{N}^{<}$the sentences

$$
\begin{aligned}
& \forall x(0 \equiv x \vee 0<x), \\
& 0<\mathbf{1} \wedge \forall x(\mathbf{0}<x \rightarrow(1 \equiv x \vee 1<x)), \\
& \mathbf{1}<\mathbf{2} \wedge \forall x(1<x \rightarrow(2 \equiv x \vee \mathbf{2}<x)),
\end{aligned}
$$

hold. They say that 0 is the smallest element, 1 the next smallest element after 0,2 the next smallest element after 1 , and so on. Since these sentences also hold in \mathfrak{A}, the "initial segment" of \mathfrak{A} looks as follows:

In addition, A contains a further element, say a, since otherwise \mathfrak{A} and $\mathfrak{N}^{<}$ would be isomorphic. Furthermore, $\mathfrak{N}^{<}$satisfies a sentence φ which says that for every element there is an immediate successor and for every element other than 0 there is an immediate predecessor. From this it follows easily that A contains, in addition to a, infinitely many other elements which together with a are ordered by $<^{A}$ like the integers:

If we consider the element $a+{ }^{A} a$ we are led to further elements of A :

$$
\left.\stackrel{1}{0^{A}} 1^{A} \frac{2}{2}^{A} \cdots><\cdots+\frac{1}{a}<\cdots\right\rangle<\cdots+\frac{1}{a+A_{a}}
$$

The reader should give a proof of this and also verify that between every two copies of $(\mathbf{Z},<)$ in \mathfrak{A} there lies another copy.
The examples in this and the previous section show that there are important classes of structures which cannot be axiomatized in first-order logic. On the other hand, this weakness of expressive power also has pleasant consequences. For example, the argument establishing that the class of archimedean fields is not axiomatizable yields a proof of the existence of non-archimedean ordered fields; and the fact that the class of fields of characteristic 0 cannot be axiomatized by means of a single $S_{\text {ar }}$-sentence is complemented by the interesting result 3.3. Using similar methods, one can obtain structures elementarily equivalent to the ordered field $\Re^{<}$of real obtain structures elementarily equivalent to the orderers, infinitely large

SCOTT ANALYSIS OF MODELS OF ARITHMETIC

Setup - Vaught topology

Given a countable relational vocabulary τ, the set of countable τ-structures with universe ω admits a canonical Polish topology - the Vaught topology.

Fix an enumeration $\varphi_{i}\left(x_{0}, \ldots, x_{i}\right)$ of the atomic τ-formulas and let the atomic diagram of a τ-structure \mathcal{A} with universe ω be

$$
D(\mathcal{A})(i)= \begin{cases}1 & \varphi_{i}\left[x_{0} \ldots x_{i} \mapsto 0 \ldots i\right]^{\mathcal{A}} \\ 0 & \text { otherwise }\end{cases}
$$

Setup - Vaught topology

Given a countable relational vocabulary τ, the set of countable τ-structures with universe ω admits a canonical Polish topology - the Vaught topology.

Fix an enumeration $\varphi_{i}\left(x_{0}, \ldots, x_{i}\right)$ of the atomic τ-formulas and let the atomic diagram of a τ-structure \mathcal{A} with universe ω be

$$
D(\mathcal{A})(i)= \begin{cases}1 & \varphi_{i}\left[x_{0} \ldots x_{i} \mapsto 0 \ldots i\right]^{\mathcal{A}} \\ 0 & \text { otherwise }\end{cases}
$$

We get an homeomorphism $\operatorname{Mod}(\tau) \rightarrow 2^{\omega}$ and can define the Borel hierarchy as usual: For countable α, and $X \subseteq \operatorname{Mod}(\tau)$

$$
\begin{array}{r}
X \in \boldsymbol{\Sigma}_{1}^{0} \Leftrightarrow X \text { open } X \in \boldsymbol{\Pi}_{1}^{0} \Leftrightarrow X \text { closed } \\
X \in \boldsymbol{\Sigma}_{\alpha}^{0} \Longleftrightarrow X=\bigcup_{i \in \omega} X_{i} \quad, X_{i} \in \boldsymbol{\Pi}_{<\alpha}^{0} \\
X \in \boldsymbol{\Pi}_{\alpha}^{0} \Longleftrightarrow X=\bigcap_{i \in \omega} X_{i} \quad, X_{i} \in \boldsymbol{\Sigma}_{<\alpha}^{0}
\end{array}
$$

SETUP - INFINITARY LOGIC

$L_{\omega_{1} \omega}$ is similar to first-order logic except it allows countable conjunctions and disjunctions.
For $\varphi \in L_{\omega_{1} \omega}$ and α countable

$$
\begin{aligned}
\varphi \in \Sigma_{0}^{\mathrm{in}}=\Pi_{0}^{\mathrm{in}} & \Longleftrightarrow \varphi \text { finite and quantifier-free } \\
\varphi \in \Sigma_{\alpha}^{\mathrm{in}} & \Longleftrightarrow \varphi=\bigvee \nmid \exists \bar{x}_{i} \varphi_{i} \quad, \varphi_{i} \in \Pi_{<\alpha}^{\mathrm{in}} \\
\varphi \in \Pi_{\alpha}^{\mathrm{in}} & \Longleftrightarrow \varphi=\nmid \forall \bar{x}_{i} \varphi_{i} \quad, \varphi_{i} \in \Sigma_{<\alpha}^{\mathrm{in}}
\end{aligned}
$$

SEtUP - Infinitary logic

$L_{\omega_{1} \omega}$ is similar to first-order logic except it allows countable conjunctions and disjunctions.
For $\varphi \in L_{\omega_{1} \omega}$ and α countable

$$
\begin{aligned}
\varphi \in \Sigma_{0}^{\mathrm{in}}=\Pi_{0}^{\mathrm{in}} & \Longleftrightarrow \varphi \text { finite and quantifier-free } \\
\varphi \in \Sigma_{\alpha}^{\mathrm{in}} & \Longleftrightarrow \varphi=\bigvee \nmid \exists \bar{x}_{i} \varphi_{i} \quad, \varphi_{i} \in \Pi_{<\alpha}^{\mathrm{in}} \\
\varphi \in \Pi_{\alpha}^{\mathrm{in}} & \Longleftrightarrow \varphi=\bigwedge \nmid \forall \bar{x}_{i} \varphi_{i} \quad, \varphi_{i} \in \Sigma_{<\alpha}^{\mathrm{in}}
\end{aligned}
$$

The asymmetric back-and-forth \leq_{α} relations are defined as

$$
\begin{aligned}
(\mathcal{A}, \bar{a}) \leq_{1}(\mathcal{B}, \bar{b}) & \Longleftrightarrow \Pi_{1}-\operatorname{tp}^{\mathcal{A}}(\bar{a}) \subseteq \Pi_{1}-\operatorname{tp}^{\mathcal{B}}(\bar{b}) \\
(\mathcal{A}, \bar{a}) \leq_{\alpha}(\mathcal{B}, \bar{b}) & \Longleftrightarrow(\forall \beta<\alpha) \forall \bar{c} \exists \exists \bar{d}(\mathcal{B}, \bar{b} \bar{c}) \leq_{\beta}(\mathcal{A}, \bar{a} \bar{d})
\end{aligned}
$$

Theorem (Karp 1965) $(A, \bar{a}) \leq_{\alpha}(\mathcal{B}, \bar{b})$ if and only if $\Pi_{\alpha}^{\mathrm{in}}-\operatorname{tp}{ }^{\mathcal{A}}(\bar{a}) \subseteq \Pi_{\alpha}^{\mathrm{in}}-\mathrm{tp}{ }^{\mathcal{B}}(\bar{b})$.

SETUP - SCOTT ANALYSIS

Theorem (Scott 1964)

For every countable structure \mathcal{A} there is an $L_{\omega_{1} \omega}$-sentence φ-the Scott sentence of \mathcal{A}-such that for any countable $\mathcal{B}, \mathcal{B} \vDash \varphi$ if and only if $\mathcal{B} \cong \mathcal{A}$.

Theorem (Montalbán 2015)

The following are equivalent for all $\alpha<\omega$ and countable \mathcal{A} :

1. The isomorphism class of \mathcal{A} is $\Pi \alpha+1$.
2. There is a $\Pi_{\alpha+1}^{\mathrm{in}}$ Scott sentence for \mathcal{A}.
3. All automorphism orbits in \mathcal{A} are $\Sigma_{\alpha}^{\mathrm{in}}$ definable without parameters.
4. Every $\Pi_{\alpha}^{\mathrm{in}}-t p$ in \mathcal{A} is $\sum_{\alpha}^{\mathrm{in}}$ supported.
5. No tuple in \mathcal{A} is α-free.

The least α such that \mathcal{A} satisfies any of the conditions is the (parameterless) Scott rank of \mathcal{A}, $S R(\mathcal{A})$.

A tuple \bar{a} is α-free in \mathcal{A} if $(\forall \beta<\alpha) \forall \bar{b} \exists \bar{a}^{\prime}, \bar{b}^{\prime}\left(\bar{a} \bar{b} \leq_{\beta} \bar{a}^{\prime} \bar{b}^{\prime} \wedge \bar{a} \not \leq_{\alpha} \bar{a}^{\prime}\right)$.

SCOTT ANALYSIS OF THEORIES

Definition (Makkai 1981)
The Scott spectrum of a theory T is the set

$$
\operatorname{SSp}(T)=\left\{\alpha \in \omega_{1}: \text { there is a countable model of } T \text { with Scott rank } \alpha\right\} .
$$

Here T might be a sentence in $L_{\omega_{1} \omega}$.

SCOTT ANALYSIS OF THEORIES

Definition (Makkai 1981)

The Scott spectrum of a theory T is the set

$$
\operatorname{SSp}(T)=\left\{\alpha \in \omega_{1}: \text { there is a countable model of } T \text { with Scott rank } \alpha\right\} .
$$

Here T might be a sentence in $L_{\omega_{1} \omega}$.

- Ash (1986) $S R(n)=1, S R\left(\omega^{\alpha}\right)=2 \alpha, S R\left(\omega^{\alpha}+\omega^{\alpha}\right)=2 \alpha+1$
$\Longrightarrow S S p(L O)=\omega_{1}-\{0\}$

SCOTT ANALYSIS OF THEORIES

Definition (Makkai 1981)

The Scott spectrum of a theory T is the set

$$
\operatorname{SSp}(T)=\left\{\alpha \in \omega_{1}: \text { there is a countable model of } T \text { with Scott rank } \alpha\right\} .
$$

Here T might be a sentence in $L_{\omega_{1} \omega}$.

- Ash (1986) $S R(n)=1, S R\left(\omega^{\alpha}\right)=2 \alpha, S R\left(\omega^{\alpha}+\omega^{\alpha}\right)=2 \alpha+1$
$\Longrightarrow \operatorname{SSp}(L O)=\omega_{1}-\{0\}$
- The standard model \mathbb{N} of $P A$ has Scott rank 1: Every element is the nth successor of $\dot{0}$ for some $n \in \omega$, so the automorphism orbits are definable by $s(s(\ldots(\dot{0}) \ldots))=x$.
- $1 \in S S p(P A)$

What else can we say about the scott spectra of $P A$ and completions of $P A$?

Scott spectrum of $P A$

Theorem (Montalbán, R. 2022)

1. $\operatorname{SSp}(P A)=1 \cup\left\{\alpha: \omega \leq \alpha<\omega_{1}\right\}, \operatorname{SSp}(\operatorname{Th}(\mathbb{N}))=1 \cup\left\{\alpha: \omega<\alpha<\omega_{1}\right\}$, and for T a non-standard completion of $P A, S S p(T)=\left[\omega, \omega_{1}\right)$.
2. If \mathcal{M} is non-homogeneous, then $S R(\mathcal{M}) \geq \omega+1$.
3. If \mathcal{M} is non-standard atomic, then $S R(\mathcal{M})=\omega$.
4. If \mathcal{M} is non-standard homogeneous, then $S R(\mathcal{M}) \in[\omega, \omega+1]$.

NO NON-STANDARD MODEL HAS FINITE SCOTT RANK

Let $\operatorname{Tr}_{\Delta_{1}^{0}}$ be a truth predicate for bounded formulas and define:

$$
\begin{gathered}
\bar{u} \leq_{0}^{a} \bar{v} \Leftrightarrow \forall(x \leq a)\left(\operatorname{Tr}_{\Delta_{1}^{0}}(x, \bar{u}) \rightarrow \operatorname{Tr}_{\Delta_{1}^{0}}(x, \bar{v})\right) \\
\bar{u} \leq_{n+1}^{a} \bar{v} \Leftrightarrow \forall \bar{x} \exists \bar{y}\left(|\bar{x}| \leq a \rightarrow\left(|\bar{y}| \leq a \wedge \bar{u} \bar{x} \leq_{n}^{a} \bar{v} \bar{y}\right)\right)
\end{gathered}
$$

NO NON-STANDARD MODEL HAS FINITE SCOTT RANK

Let $T r_{\Delta_{1}^{0}}$ be a truth predicate for bounded formulas and define:

$$
\begin{gathered}
\bar{u} \leq_{0}^{a} \bar{v} \Leftrightarrow \forall(x \leq a)\left(\operatorname{Tr}_{\Delta_{1}^{0}}(x, \bar{u}) \rightarrow \operatorname{Tr}_{\Delta_{1}^{0}}(x, \bar{v})\right) \\
\bar{u} \leq_{n+1}^{a} \bar{v} \Leftrightarrow \forall \bar{x} \exists \bar{y}\left(|\bar{x}| \leq a \rightarrow\left(|\bar{y}| \leq a \wedge \bar{u} \bar{x} \leq_{n}^{a} \bar{v} \bar{y}\right)\right)
\end{gathered}
$$

Proposition

Let $\bar{a}, \bar{b} \in M$. Then $\bar{a} \leq_{n} \bar{b} \Leftrightarrow \forall(m \in \omega) \mathcal{M} \vDash \bar{a} \leq_{n}^{\dot{m}} \bar{b}$. Furthermore, if there is $c \in M-\mathbb{N}$ such that $\mathcal{M} \vDash \bar{a} \leq_{n}^{c} \bar{b}$, then $\bar{a} \leq_{n} \bar{b}$.

Lemma For every $\bar{a}, \bar{b} \in M^{<\omega}, \bar{a} \leq_{\omega} \bar{b}$ if and only if $\operatorname{tp}(\bar{a})=\operatorname{tp}(\bar{b})$.
Proof sketch.
(\Rightarrow) The conjunction over all formulas in a type is $\Pi_{\omega}^{\mathrm{in}}$ and $\bar{a} \leq_{\omega} \bar{b}$ iff $\Pi_{\omega}^{\mathrm{in}}-\operatorname{tp}(\bar{a}) \subseteq \Pi_{\omega}^{\mathrm{in}}-\operatorname{tp}(\bar{b})$.
(\Leftarrow) Take $\mathcal{N} \succeq \mathcal{M}$ homogeneous, then $\operatorname{tp}(\bar{a})=\operatorname{tp}(\bar{b}) \Longrightarrow \bar{b} \in a u t_{\mathcal{N}}(\bar{a})$, so
$(\mathcal{N}, \bar{a}) \leq_{\omega}(\mathcal{N}, \bar{b})$ and for all $\left.n, m, \mathcal{N} \vDash \bar{a}\right) \leq_{n}^{\dot{m}} \bar{b}$. By elementarity this also holds in \mathcal{M}.
Lemma follows by definition of \leq_{ω}.

NO NON-STANDARD MODEL HAS FINITE SCOTT RANK

The lemma implies that non-homogeneous models of $P A$ cannot have Scott rank $\leq \omega$ as they contain \bar{a}, \bar{b} with $\operatorname{tp}(\bar{a})=\operatorname{tp}(\bar{b})$, hence $\bar{a} \leq_{\omega} \bar{b}$ and $\bar{a} \notin a u t(\bar{b})$.

Using the definability of the formal back-and-forth relations and elementary extending to non-homogeneous models we get the lower bounds.

Lemma
If \mathcal{M} is a non-standard model of $P A$ then $S R(\mathcal{M}) \geq \omega$.

BUILDING MODELS

If for any countable well-order L we can find a model \mathcal{M}_{L} such that L is infinitary bi-interpretable with \mathcal{M}_{L} by formulas of the right complexity then we would get $\left.S R\left(\mathcal{M}_{L}\right)\right)=\omega+S R(L)$.

Theorem (Gaifman 1976)

For every completion T of $P A$ and every linear order L there is a model \mathcal{M}_{L} of T with $\operatorname{Aut}\left(\mathcal{N}_{L}\right) \cong \operatorname{Aut}(L)$.

BUILDING MODELS

If for any countable well-order L we can find a model \mathcal{M}_{L} such that L is infinitary bi-interpretable with \mathcal{M}_{L} by formulas of the right complexity then we would get $\left.S R\left(\mathcal{M}_{L}\right)\right)=\omega+S R(L)$.

Theorem (Gaifman 1976)
For every completion T of $P A$ and every linear order L there is a model \mathcal{M}_{L} of T with $\operatorname{Aut}\left(\mathcal{N}_{L}\right) \cong \operatorname{Aut}(L)$.

Theorem (Harrison-Trainor, Montalbán, Miller 2018)
Two countable structures \mathcal{A} and \mathcal{B} are infinitary bi-interpretable if and only if their automorphism groups are isomorphic.

A careful analysis of Gaifman's theorem shows that the complexity of the formulas involved in the bi-interpretation is just right so that $S R\left(\mathcal{N}_{L}\right)=\omega+S R(L)$.

Theorem (Montalbán, R. 2022)

1. $\operatorname{SSp}(P A)=1 \cup\left\{\alpha: \omega \leq \alpha<\omega_{1}\right\}, \operatorname{SSp}(\operatorname{Th}(\mathbb{N}))=1 \cup\left\{\alpha: \omega<\omega<\omega_{1}\right\}$, and for T a non-standard completion of $P A, S S p(T)=\left[\omega, \omega_{1}\right)$.
2. If \mathcal{M} is non-homogeneous, then $S R(\mathcal{M}) \geq \omega+1$.
3. If \mathcal{M} is non-standard atomic, then $S R(\mathcal{M})=\omega$.
4. If \mathcal{M} is non-standard homogeneous, then $\operatorname{SR}(\mathcal{M}) \in[\omega, \omega+1]$.

Theorem (Montalbán, R. 2022)

1. $\operatorname{SSp}(P A)=1 \cup\left\{\alpha: \omega \leq \alpha<\omega_{1}\right\}, S S p(\operatorname{Th}(\mathbb{N}))=1 \cup\left\{\alpha: \omega<\omega<\omega_{1}\right\}$, and for T a non-standard completion of $P A, S S p(T)=\left[\omega, \omega_{1}\right)$.
2. If \mathcal{M} is non-homogeneous, then $S R(\mathcal{M}) \geq \omega+1$.
3. If \mathcal{M} is non-standard atomic, then $S R(\mathcal{M})=\omega$.
4. If \mathcal{M} is non-standard homogeneous, then $S R(\mathcal{M}) \in[\omega, \omega+1]$.

- $S S p$ for completions of $P A^{-}+I \Sigma_{n}$?
- $S S p$ for other foundational theories $Z_{2}, K P, Z F, \ldots$?
- Are there non-atomic homogeneous models of $P A$ of Scott rank ω ?

A PHILOSOPHICAL TAKE

Theorem (Łełyk, Szlufik 2023; in preparation)
If \mathcal{M} is a homogeneous model of PA that is not atomic, then $\operatorname{SR}(\mathcal{M})=\omega+1$.
Kalociński 2023: Many theories have an intended model, a model that we have in mind when axiomatizing the theory. In the case of PA, this intendedness can be seen in the Scott analysis. Does this phenomenon also appear in other theories? Can we discover intended models from Scott analysis?

A PHILOSOPHICAL TAKE

Theorem (Łełyk, Szlufik 2023; in preparation)
If \mathcal{M} is a homogeneous model of PA that is not atomic, then $S R(\mathcal{M})=\omega+1$.
Kalociński 2023: Many theories have an intended model, a model that we have in mind when axiomatizing the theory. In the case of PA, this intendedness can be seen in the Scott analysis. Does this phenomenon also appear in other theories? Can we discover intended models from Scott analysis?

Already for fragments of second-order arithmetic, one can see that Scott analysis does not reveal intendedness.

For $R C A_{0}\left(P A^{-}+I \Sigma_{1}^{0}+\Delta_{1}^{0}-C A\right),(\mathbb{N}, S) \vDash R C A_{0}$ when S is a countable Turing ideal and all of these models have same Scott rank.

```
computable Scott rank
```

The COMPLEXITY OF THE SET OF MODELS OF A THEORY

So far we have attempted to measure the complexity of T via its isomorphism relation. Why not look at the descriptive complexity of its set of models?

Definition

Let X be a Polish space and $A \subseteq X$, then for any point class Γ, A is Γ-complete if $A \in \Gamma(X)$ and for every $B \in \Gamma(Y)$ for any Polish Y, B is Wadge reducible to $A, B \leq_{W} A$, i.e., there is continuous $f: Y \rightarrow X$ with $f(y) \in X$ if and only $y \in Y$.

For any theory $T, \operatorname{Mod}(T) \in \boldsymbol{\Pi}_{\omega}^{0}$.

So far we have attempted to measure the complexity of T via its isomorphism relation. Why not look at the descriptive complexity of its set of models?

Definition

Let X be a Polish space and $A \subseteq X$, then for any point class Γ, A is Γ-complete if $A \in \Gamma(X)$ and for every $B \in \Gamma(Y)$ for any Polish Y, B is Wadge reducible to $A, B \leq_{W} A$, i.e., there is continuous $f: Y \rightarrow X$ with $f(y) \in X$ if and only $y \in Y$.

For any theory $T, \operatorname{Mod}(T) \in \boldsymbol{\Pi}_{\omega}^{0}$.
Is $\operatorname{Mod}(T A)$, the set of models of true arithmetic $\boldsymbol{\Pi}_{\omega}^{0}$-complete?

MAIN THEOREM

Theorem (Andrews, Lempp, R. in preparation)
For any complete first-order theory $T, \operatorname{Mod}(T)$ is Π_{ω}^{0} complete if and only if T has no axiomatization by formulas of bounded quantifier-complexity.

MAIN THEOREM

Theorem (Andrews, Lempp, R. in preparation)
For any complete first-order theory $T, \operatorname{Mod}(T)$ is Π_{ω}^{0} complete if and only if T has no axiomatization by formulas of bounded quantifier-complexity.

- Gives a partial characterization of the Wadge-degree of a theory in terms of first-order logic.
- Suggests that $L_{\omega_{1} \omega}$ is not more efficient when talking about sets of models.

Corollary

If T is not bounded axiomatizable, then $\operatorname{Mod}(T)$ is is not $\Sigma_{n}^{\operatorname{in}}$ definable for any $n \in \omega$.
Proof.
Assume it was, then by Lopez-Escobar $\operatorname{Mod}(T)$ is $\boldsymbol{\Sigma}_{n}^{0}$ and thus not $\boldsymbol{\Pi}_{\omega}^{0}$-complete. So it is axiomatizable by formulas of bounded quantifier-complexity.
(\Leftarrow) Say, S is a set of Σ_{n} formulas axiomatizing $\operatorname{Mod}(T)$, then $\bigwedge_{\varphi \in S} \varphi$ is Π_{n+1}^{in} and hence by Lopez-Escobar, $\operatorname{Mod}(T)$ is $\boldsymbol{\Pi}_{n+1}^{0}$.
(\Leftarrow) Say, S is a set of Σ_{n} formulas axiomatizing $\operatorname{Mod}(T)$, then $\bigwedge_{\varphi \in S} \varphi$ is Π_{n+1}^{in} and hence by Lopez-Escobar, $\operatorname{Mod}(T)$ is $\boldsymbol{\Pi}_{n+1}^{0}$.
(\Rightarrow) This direction relies on an old theorem due to Solovay.
Theorem (Solovay 1982)
Let T be a complete theory. Suppose $R \leq_{T} X$ is an enumeration of a Scott set S, with functions t_{n} which are $\Delta_{n}^{0}(X)$ uniformly in n, such that for each $n, \lim _{s} t_{n}(s)$ is an R-index for $T \cap \Sigma_{n}$, and for all $s, t_{n}(s)$ is an R-index for a subset of $T \cap \Sigma_{n}$. Then T has a model \mathcal{B}, representing S, with $\mathcal{B} \leq_{T} X$.

PROOF OF THEOREM

(\Leftarrow) Say, S is a set of Σ_{n} formulas axiomatizing $\operatorname{Mod}(T)$, then $\bigwedge_{\varphi \in S} \varphi$ is Π_{n+1}^{in} and hence by Lopez-Escobar, $\operatorname{Mod}(T)$ is $\boldsymbol{\Pi}_{n+1}^{0}$.
(\Rightarrow) This direction relies on an old theorem due to Solovay.
Theorem (Solovay 1982)
Let T be a complete theory. Suppose $R \leq_{T} X$ is an enumeration of a Scott set S, with functions t_{n} which are $\Delta_{n}^{0}(X)$ uniformly in n, such that for each $n, \lim _{s} t_{n}(s)$ is an R-index for $T \cap \Sigma_{n}$, and for all $s, t_{n}(s)$ is an R-index for a subset of $T \cap \Sigma_{n}$. Then T has a model \mathcal{B}, representing S, with $\mathcal{B} \leq_{T} X$.

A Scott set $S \subseteq 2^{\omega}$ is a set satisfying

1. $x \leq_{T} y$ and $y \in S \Longrightarrow x \in S$,
2. $x, y \in S \Longrightarrow x \oplus y \in S$,
3. and if $x \in S$ codes an infinite binary tree T_{x}, then $S \cap\left[T_{x}\right] \neq \emptyset$.
(\Leftarrow) Say, S is a set of Σ_{n} formulas axiomatizing $\operatorname{Mod}(T)$, then $\bigwedge_{\varphi \in S} \varphi$ is Π_{n+1}^{in} and hence by Lopez-Escobar, $\operatorname{Mod}(T)$ is Π_{n+1}^{0}.
(\Rightarrow) This direction relies on an old theorem due to Solovay.
Theorem (Solovay 1982)
Let T be a complete theory. Suppose $R \leq_{T} X$ is an enumeration of a Scott set S, with functions t_{n} which are $\Delta_{n}^{0}(X)$ uniformly in n, such that for each $n, \lim _{s} t_{n}(s)$ is an R-index for $T \cap \Sigma_{n}$, and for all $s, t_{n}(s)$ is an R-index for a subset of $T \cap \Sigma_{n}$. Then T has a model \mathcal{B}, representing S, with $\mathcal{B} \leq_{T} X$.
$R \in 2^{\omega}$ is an enumeration of a scott set S if $\left\{R^{[i]}: i \in \omega\right\}=S$.

PROOF OF THEOREM

(\Leftarrow) Say, S is a set of Σ_{n} formulas axiomatizing $\operatorname{Mod}(T)$, then $\bigwedge_{\varphi \in S} \varphi$ is Π_{n+1}^{in} and hence by Lopez-Escobar, $\operatorname{Mod}(T)$ is $\boldsymbol{\Pi}_{n+1}^{0}$.
(\Rightarrow) This direction relies on an old theorem due to Solovay.
Theorem (Solovay 1982)
Let T be a complete theory. Suppose $R \leq_{T} X$ is an enumeration of a Scott set S, with functions t_{n} which are $\Delta_{n}^{0}(X)$ uniformly in n, such that for each $n, \lim _{s} t_{n}(s)$ is an R-index for $T \cap \Sigma_{n}$, and for all $s, t_{n}(s)$ is an R-index for a subset of $T \cap \Sigma_{n}$. Then T has a model \mathcal{B}, representing S, with $\mathcal{B} \leq_{T} X$.

A countable model \mathcal{M} represents a countable Scott set S if for all complete B_{n}-types $\Gamma(\bar{u}, x)$ and all $\bar{c} \in M$:

$$
\Gamma(\bar{c}, x) \text { realized in } \mathcal{M} \Longleftrightarrow \Gamma \in S \text { and } \operatorname{Con}\left(\Gamma(\bar{c}, x) \cup \operatorname{Diag}_{e l}(\mathcal{M})\right)
$$

PROOF OF THEOREM

(\Leftarrow) Say, S is a set of Σ_{n} formulas axiomatizing $\operatorname{Mod}(T)$, then $\bigwedge_{\varphi \in S} \varphi$ is Π_{n+1}^{in} and hence by Lopez-Escobar, $\operatorname{Mod}(T)$ is Π_{n+1}^{0}.
(\Rightarrow) This direction relies on an old theorem due to Solovay.
Theorem (Solovay 1982)
Let T be a complete theory. Suppose $R \leq_{T} X$ is an enumeration of a Scott set S, with functions t_{n} which are $\Delta_{n}^{0}(X)$ uniformly in n, such that for each n, $\lim _{s} t_{n}(s)$ is an R-index for $T \cap \Sigma_{n}$, and for all $s, t_{n}(s)$ is an R-index for a subset of $T \cap \Sigma_{n}$. Then T has a model \mathcal{B}, representing S, with $\mathcal{B} \leq_{T} X$.

- Known proofs use methods for iterated Priority constructions
- Original proof uses a Harrington style worker argument
- Version above is due to Knight (1999) and proved using version of α-systems

PROOF OF THEOREM CTD

Fix a theory T not axiomatizable by bounded quantifier formulas and theories $T_{n} \neq T$ such that $T_{n} \cap \Sigma_{n}=T \cap \Sigma_{n}$, an enumeration R of a Scott set S containing $T,\left(T_{n}\right)$ and a Borel code C for a fixed Π_{ω}^{0} set $P=\bigcap P_{n}$ where P_{n} is Σ_{n}.

In order to prove our theorem we:

- Given x produce (indices) for functions t_{n} such that $t_{n}\left(x^{(n-1)}, s\right)=R\left(T_{n+1}\right)$ if $x \notin P_{n, s}$ and $t_{n}\left(x^{(n-1)}, s\right)=R(T)$ otherwise. This can be done recursive in $x \oplus S \oplus C$.
- Verify that Solovay's theorem is continuous, i.e., the function $T \mapsto \mathcal{B}$ is continuous.

PROOF OF THEOREM CTD

Fix a theory T not axiomatizable by bounded quantifier formulas and theories $T_{n} \neq T$ such that $T_{n} \cap \Sigma_{n}=T \cap \Sigma_{n}$, an enumeration R of a Scott set S containing $T,\left(T_{n}\right)$ and a Borel code C for a fixed Π_{ω}^{0} set $P=\bigcap P_{n}$ where P_{n} is Σ_{n}.

In order to prove our theorem we:

- Given x produce (indices) for functions t_{n} such that $t_{n}\left(x^{(n-1)}, s\right)=R\left(T_{n+1}\right)$ if $x \notin P_{n, s}$ and $t_{n}\left(x^{(n-1)}, s\right)=R(T)$ otherwise. This can be done recursive in $x \oplus S \oplus C$.
- Verify that Solovay's theorem is continuous, i.e., the function $T \mapsto \mathcal{B}$ is continuous.

Corollary

$\operatorname{Mod}(P A)$, and $\operatorname{Mod}(T)$ for T a completion of $P A$ are Π_{ω}^{0}-complete.
Proof.
By Tarski's undefinability of truth, no completion of $P A$ is axiomatizable by formulas of bounded quantifier-complexity. To get $\operatorname{Mod}(P A)$ take $T=T A$ and let T_{n} such that $T_{n} \not \forall I \Sigma_{n}$.

SEQUENTIAL THEORIES

What about other theories, what role does induction play in this? How about completions of $P A^{-}$? We asked Roman Kossak who asked Ali Enayat and Albert Visser.

SEQUENTIAL THEORIES

What about other theories, what role does induction play in this? How about completions of $P A^{-}$? We asked Roman Kossak who asked Ali Enayat and Albert Visser.

Definition (Pudlák 1983, Pakhomov and Visser 2022)
A (possibly incomplete) τ-theory T is sequential if it admits a definitional extension to Adjunctive set theory $\operatorname{AS}(T)$, namely, in $\tau \sqcup\{\in\}$, we have the axioms

1. $\exists x \forall y(\neg y \in x)$ ("the empty set exists"), and
2. $\forall x \forall y \exists z \forall w(w \in z \leftrightarrow(w \in x \vee w=y))$ (" $x \cup\{y\}$ exists").

SEQUENTIAL THEORIES

What about other theories, what role does induction play in this? How about completions of $P A^{-}$? We asked Roman Kossak who asked Ali Enayat and Albert Visser.

Definition (Pudlák 1983, Pakhomov and Visser 2022)
A (possibly incomplete) τ-theory T is sequential if it admits a definitional extension to Adjunctive set theory $\operatorname{AS}(T)$, namely, in $\tau \sqcup\{\in\}$, we have the axioms

1. $\exists x \forall y(\neg y \in x)$ ("the empty set exists"), and
2. $\forall x \forall y \exists z \forall w(w \in z \leftrightarrow(w \in x \vee w=y))$ (" $x \cup\{y\}$ exists").

In essence, sequential theories allow for coding of finite sequences as in Gödel's β-function (but do not require, e.g., extensionality).

SEQUENTIAL THEORIES

What about other theories, what role does induction play in this? How about completions of $P A^{-}$? We asked Roman Kossak who asked Ali Enayat and Albert Visser.

Definition (Pudlák 1983, Pakhomov and Visser 2022)
A (possibly incomplete) τ-theory T is sequential if it admits a definitional extension to Adjunctive set theory $\operatorname{AS}(T)$, namely, in $\tau \sqcup\{\in\}$, we have the axioms

1. $\exists x \forall y(\neg y \in x)$ ("the empty set exists"), and
2. $\forall x \forall y \exists z \forall w(w \in z \leftrightarrow(w \in x \vee w=y))$ (" $x \cup\{y\}$ exists").

In essence, sequential theories allow for coding of finite sequences as in Gödel's β-function (but do not require, e.g., extensionality).

Examples of sequential theories:

$P A, I \Delta_{0}+\exp , Z F, K P$, even $P A^{-}$(Jeřábek 2012), $\mathrm{AS}=\mathrm{AS}(\emptyset)$ (Pakhomov, Visser 2022), but not Robinson's Q.

Enayat und Visser's Result

Theorem (Enayat, Visser in preparation)
No sequential theory in finite vocabulary has an axiomatization by sentences of bounded quantifier complexity.

The finiteness condition here is essential. Consider the Morleyization of true arithmetic (add a relation R_{φ} for every formula φ). This has a compositional axiomatization in the style of Tarski's definition of satisfaction, and hence an axiomatization by Π_{2} formulas.

Corollary

If T is sequential in finite vocabulary, then $\operatorname{Mod}(T)$ is $\boldsymbol{\Pi}_{\omega}^{0}$ complete.

FURTHER WORK

Our techniques can be used to give an alternative proof to a remarkable result by Harrison-Trainor and Kretschmer which is another witness that $L_{\omega_{1} \omega}$ is not more efficient than first-order logic.

Corollary (Harrison-Trainor, Kretschmer 2022; ALR, Gonzalez, Zhu in preparation) If φ is a first-order formula that is equivalent to a Σ_{n}^{in} formula, then φ is equivalent to a Σ_{n} formula.

We are currently working on a full axiomatization of the Wadge degrees of the set of models of theories in terms of first-order logic.

FURTHER WORK

Our techniques can be used to give an alternative proof to a remarkable result by Harrison-Trainor and Kretschmer which is another witness that $L_{\omega_{1} \omega}$ is not more efficient than first-order logic.

Corollary (Harrison-Trainor, Kretschmer 2022; ALR, Gonzalez, Zhu in preparation) If φ is a first-order formula that is equivalent to a Σ_{n}^{in} formula, then φ is equivalent to a Σ_{n} formula.

We are currently working on a full axiomatization of the Wadge degrees of the set of models of theories in terms of first-order logic.

Thank you!

