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Pairs of Structures



Setting the scene

Computable structure: A structure 𝒮 in vocabulary 𝜏 is computable if there is an algorithm that
computes 𝑅𝒮

𝑖 , 𝑓𝒮
𝑖 , 𝑐𝒮

𝑖 for all 𝑅,𝑓𝑖, 𝑐𝑖 ∈ 𝜏 on a computable universe 𝑆.

𝐿𝜔1𝜔: Extends first-order logic by allowing countable conjunctions and disjunctions.

Σin
0 = Πin

0 …finite quantifier free formulas.

Πin
𝛼 formulas: ⋀

𝑖∈ℕ
∀ ̄𝑥𝜃𝑖( ̄𝑥, ̄𝑦) 𝜃𝑖 ∈ Σin

<𝛼

Scott’s theorem: Every countable structure has a Scott sentence in 𝐿𝜔1𝜔 classifying it among
countable structures.

Lopez Escobar theorem: The 𝐿𝜔1𝜔 definable subsets correspond with the invariant Borel subsets
on 𝑀𝑜𝑑(𝜏) .
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Warm-up

Let 𝑋 ⊆ 𝜔 be Π0
2 , i.e., 𝑥 ∈ 𝑋 ⟺ ∀𝑢∃𝑣𝑅(𝑥, 𝑢, 𝑣).

Define a computable function 𝑓𝑅 as

𝜑𝑓𝑅(𝑥)(⟨𝑦1, 𝑦2⟩) =

⎧{{
⎨{{⎩

1 𝑦1 ≤ 𝑦2 ∧ ∀𝑧 < 𝑦2∃𝑣 𝑅(𝑥, 𝑧, 𝑣)
0 𝑦2 < 𝑦1 ∧ ∀𝑧 < 𝑦2∃𝑣 𝑅(𝑥, 𝑧, 𝑣)
↑ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝜑𝑓𝑅(𝑥) ≅ {
𝜔 𝑥 ∈ 𝑋
{𝑛 ∶ 𝑛 ∈ ℕ} 𝑥 ∉ 𝑋
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Warm-up

Let 𝑋 ⊆ ℕ be Σ0
3 , i.e., 𝑥 ∈ 𝑋 ⟺ ∃𝑢∀𝑣∃𝑤 𝑅(𝑥, 𝑢, 𝑣, 𝑤).

Define a computable function 𝑔𝑅 as

𝜑𝑔𝑅(𝑥) = ⟨0, 0⟩ < ⟨1, 𝜑𝑓𝑅(0,−)
⟩ < ⟨0, 1⟩ < ⟨2, 𝜑𝑓𝑅(1,−)

⟩ < ⟨0, 2⟩ < …

𝜑𝑔𝑅(𝑥) ≅ {
{𝜔 ⋅ 𝑛, 𝜔2 ∶ 𝑛 ∈ ℕ} 𝑥 ∈ 𝑋
𝜔 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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Warm-up

Recall 𝑥 ∈ 𝑋 ⟺ ∃𝑢∀𝑣∃𝑤𝑅(𝑥, 𝑢, 𝑣, 𝑤).

𝜑ℎ𝑅(𝑥),0 = 𝑐0 𝑐1 𝑐2 ⋯

At stage 𝑠, for every 𝑢 < 𝑠, run a strategy that activates if |𝜑𝑓𝑅(𝑥,𝑢,−),𝑠| > |𝜑𝑓𝑅(𝑥,𝑢,−),𝑠−1|:

1. If you don’t have a coding location 𝑐𝑖 , pick an unused coding location.
2. Add new element to the end of your coding location.
3. Restart all strategies for 𝑣 > 𝑢.

Example: 𝜑𝑓𝑅(𝑥,0,−)
≅ 5, 𝜑𝑓𝑅(𝑥,1,−)

≅ 𝜔

𝜑ℎ𝑅(𝑥) = ⋯ ⋯

𝜑ℎ𝑅(𝑥) ≅ {
𝜔 ⋅ 2 𝑥 ∈ 𝑋
𝜔 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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A pair of structures

We have witnessed that the isomorphism problem for (𝜔 ⋅ 2, 𝜔) is (Σ0
3, Π0

3)-hard. In fact it is
complete, as “There exists a left limit point” is Σ0

3 .

1. Constructed ℎ𝑅 using our function 𝑓𝑅 (for (Σ0
2, Π0

2)) and injury.
2. (𝜔 ⋅ 2, 𝜔) possessing “more structure” allows to absorb injury.
3. Πin

1 -th(𝜔) ⊆ Πin
1 -th(𝑛), Πin

3 -th(𝜔 ⋅ 2) ⊆ Πin
3 -th(𝜔)

4. 𝜔 has a Πin
3 Scott sentence, thus we can not code more in pairs involving 𝜔.

Can we prove something general?

Theorem (Ash-Knight ’90)
For every computable ordinal 𝛼 and every Σ0

2𝛼+1 𝑋 ⊆ 𝜔, there is a computable function 𝑓 such
that

𝜑𝑓(𝑥) ≅ {
𝜔𝛼 ⋅ 2 𝑥 ∈ 𝑋
𝜔𝛼 𝑥 ∉ 𝑋

.

7



A pair of structures

We have witnessed that the isomorphism problem for (𝜔 ⋅ 2, 𝜔) is (Σ0
3, Π0

3)-hard. In fact it is
complete, as “There exists a left limit point” is Σ0

3 .

1. Constructed ℎ𝑅 using our function 𝑓𝑅 (for (Σ0
2, Π0

2)) and injury.
2. (𝜔 ⋅ 2, 𝜔) possessing “more structure” allows to absorb injury.
3. Πin

1 -th(𝜔) ⊆ Πin
1 -th(𝑛), Πin

3 -th(𝜔 ⋅ 2) ⊆ Πin
3 -th(𝜔)

4. 𝜔 has a Πin
3 Scott sentence, thus we can not code more in pairs involving 𝜔.

Can we prove something general?

Theorem (Ash-Knight ’90)
For every computable ordinal 𝛼 and every Σ0

2𝛼+1 𝑋 ⊆ 𝜔, there is a computable function 𝑓 such
that

𝜑𝑓(𝑥) ≅ {
𝜔𝛼 ⋅ 2 𝑥 ∈ 𝑋
𝜔𝛼 𝑥 ∉ 𝑋

.

7



The pairs of structures theorem

Theorem (Ash-Knight ’90)
For 𝛼 a computable ordinal, let 𝒮0 and 𝒮1 be computable structures such that 𝒮1 ≤𝛼 𝒮0 and
{𝒮0, 𝒮1} is 𝛼-friendly. Then for any Π0

𝛼 set 𝑋 there is a computable function 𝑓 such that

𝜑𝑓(𝑥) ≅ {
𝒮0 𝑥 ∈ 𝑋
𝒮1 𝑥 ∉ 𝑋

.

≤𝛼 are the asymmetric 𝛼 back-and-forth relation coming out of Karp’s work related to Scott’s
isomorphism theorem.

𝒮1 ≤𝛼 𝒮0 if Πin
𝛼 -th(𝒮1) ⊆ Πin

𝛼 -th(𝒮0).

(𝒮𝑖)𝑖∈𝐼 is 𝛼-friendly if the structures 𝒮𝑖 are uniformly computable and for 𝛾 < 𝛼
{(𝑖, 𝑗, ̄𝑎, 𝑏̄) ∶ (𝒮𝑖, ̄𝑎) ≤𝛾 (𝒮𝑗, 𝑏̄)} is computably enumerable, uniformly in 𝛾.
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Proof and a variation

• Proved using Ash and Knight’s 𝛼-system, a system for iterated priority constructions.
• Proof is prime example of a proof using systems for priority constructions, e.g., 𝛼-systems,
Harrington’s worker method, Montalbán’s true stage machinery or game meta theorem.

Theorem (Ash-Knight ’90)
For 𝛼 a computable ordinal, let (𝒮𝑖)𝑖∈𝜔, 𝒮 be computable structures such that (𝒮, 𝒮𝑖)𝑖∈𝜔 are
𝛼-friendly and for each 𝛽 < 𝛼 and ̄𝑎 ∈ 𝒮, there is 𝑖 and 𝑏̄ ∈ 𝒮𝑖 such that
Πin

𝛽 -th(𝒮, ̄𝑎) ⊆ Πin
𝛽 -th(𝒮𝑖, 𝑏̄). Then for every Πin

𝛼 set 𝑋, there exists a computable function 𝑓
such that

𝜑𝑓(𝑥) ≅ {
𝒮 𝑥 ∈ 𝑋
𝒮𝑖 for some 𝑖, if 𝑥 ∉ 𝑋

.
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Marker extensions using pairs of structures

Marker ’89 devised a method to extend a Σ0
𝑛 axiomatizable theory 𝑇 to a theory 𝑇 ′ that is Σ0

𝑛+1
axiomatizable, not Σ0

𝑛 axiomatizable but preserves other model-theoretic properties.

We can do something similar using pairs of structures for 𝐿𝜔1𝜔 theories.

Theorem (Goncharov-Harizanov-Knight-McCoy-Miller-Solomon ’05)
Let 𝛼 be a computable successor ordinal and 𝒮0, 𝒮1 be computable 𝛼-friendly structures such
that 𝒮0 =𝛽 𝒮1 for 𝛽 < 𝛼, then for any Δ0

𝛼 set 𝑋, there is a computable function 𝑓 such that

𝜑𝑓(𝑥) ≅ {
𝒮0 𝑥 ∈ 𝑋
𝒮1 𝑥 ∉ 𝑋

.
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Marker extensions using pairs of structures

Given 𝒢 produce new structure 𝒢−𝛼 by replacing edges with copies of 𝒮0 and non-edges with 𝒮1 .

𝒢 ∶ 𝑎 𝑏 𝒢−𝛼 ∶ 𝑎𝑓 𝑏𝑓
𝒮1

𝒮0

Formally: 𝒢−𝛼 is an 𝐿 ∪ {𝑉 /1, 𝑂/3} structure where we have a bijection 𝑓 ∶ 𝐺 → 𝑉 and the 𝐿-reduct
of 𝑂(𝑓(𝑎), 𝑓(𝑏), −) is isomorphic to 𝒮0 if 𝑎𝐸𝑏 and 𝒮1 if ¬𝑎𝐸𝑏, no 𝐿-symbol holds on elements of 𝑉
and the sets 𝑉, and 𝑂(𝑎, 𝑏, −) for 𝑎, 𝑏 ∈ 𝑉 are pairwise disjoint.

𝒢−𝛼 can then be transformed to a graph using standard techniques.

If additionally every 𝒮𝑖 satisfies a Πin
𝛼 sentence not satisfied by 𝒮1−𝑖 , then we get.

1. If 𝒢 has Scott rank 𝛽, then 𝒢−𝛼 has Scott rank 𝛼 + 𝛽.
2. If 𝒢 has a copy computable in d, then 𝒢−𝛼 has a copy computable in every c with c(𝛼) ≥ d.
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Applications in computable structure theory

Successfully used in the last two decades to lift results in computable structure theory.

Example:

Isomorphism spectrum of 𝒮, 𝐷𝑔𝑆𝑝≅(𝒮) = {𝑑𝑒𝑔(𝒮1) ∶ 𝒮1 ≅ 𝒮}

Theorem

1. (Slaman; Wehner ’98) There is 𝒮 with 𝐷𝑔𝑆𝑝≅(𝒮) = {d >𝑇 0}.
2. (GHKMMS ’05) For every computable successor ordinal 𝛼, there is a structure with

𝐷𝑔𝑆𝑝≅(𝒮) = 𝑛𝑜𝑛-𝑙𝑜𝑤𝛼 = {d ∶ d(𝛼) > 0(𝛼)}.
3. (Greenberg-Montalbán-Slaman ’13) There is 𝒮 with 𝐷𝑔𝑆𝑝≅(𝒮) = {d ∶ d ∉ 𝐻𝑌 𝑃}.
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Pairs of structures for sets of reals

Say that distinguishing 𝒮0 from 𝒮1 is Π0
𝛼 hard, if there is a computable operator Γ ∶ 2ℕ → 2ℕ

such that for any Π0
𝛼 𝑋 ⊆ 2ℕ , Γ𝑥 ≅ 𝒮0 if 𝑥 ∈ 𝑋 and Γ𝑥 ≅ 𝒮1 otherwise.

Theorem (Montalbán (2nd book draft))
Let 𝛼 be a computable ordinal and 𝒮0 and 𝒮1 are computable 𝛼-friendly structures with
𝒮0 ≤𝛼 𝒮1 , then distinguishing 𝒮0 from 𝒮1 is Π0

𝛼-hard.
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Application: Analytic complete
equivalence relations



ΣΣΣ1
1-complete equivalence relations

Let 𝐸 be a binary relation on a Polish space 𝑋 and 𝐹 be a binary relation on a Polish space 𝑌,
then 𝐸 is Borel reducible to 𝐹, 𝐸 ≤𝐵 𝐹 if there is a Borel 𝑓 ∶ 𝑋 → 𝑌 such that for all
𝑥0, 𝑥1 ∈ 𝑋, 𝑥0𝐸𝑥1 iff 𝑓(𝑥0)𝐹𝑓(𝑥1).

If 𝐸 ∈ Γ and for every 𝐹 ∈ Γ, 𝐹 ≤𝐵 𝐸, then 𝐸 is Γ-complete.

The space 𝑀𝑜𝑑(𝜏) of 𝜏-structures with universe ℕ has a natural Polish topology given by basic
open sets of structures extending a finite structure.

Theorem (Louveau, Rosendal ’05)
The embeddability relation on graphs is aΣΣΣ1

1-complete pre-order. The bi-embeddability relation
on graphs is aΣΣΣ1

1-complete equivalence relation.

𝒮0 and 𝒮1 are elementary bi-embeddable, 𝒮0 ≈ 𝒮1 if and only if 𝒮0 ≼ 𝒮1 and 𝒮1 ≼ 𝒮0 .
Question (SD Friedman, Moto Ros ’11): Is elementary bi-embeddability on graphsΣΣΣ1

1 complete?
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Reducing embeddability to elementary embeddability

Theorem (R. ’21)
Elementary embeddability on graphs is aΣΣΣ1

1-complete pre-order and elementary
bi-embeddability is aΣΣΣ1

1-complete equivalence relation.

Proved by giving 𝐹 ∶↪𝐺𝑟𝑎𝑝ℎ𝑠≤𝐵≼𝐺𝑟𝑎𝑝ℎ𝑠 .

1. Marker extension using pairs of structures.
2. Computably transform resulting structures into a graph using standard techniques.
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Fuhrken ’66 gave an example of a theory 𝑇 with 2ℵ0 non-isomorphic minimal models, i.e. 𝒮1 ≼ 𝒮
implies 𝒮 = 𝒮1 .

𝑇 = 𝑇 ℎ((2𝜔, (𝑥 ↦ 𝜎 + 𝑥)𝜎∈2<𝜔 , ({𝑥 ∶ 𝜎 ⊂ 𝑥})𝑥∈2<𝜔)) Shelah ’78

Take ⟨ ̄0⟩ and ⟨ ̄1⟩. They satisfy the conditions of GHKMMS theorem for 𝛼 = 2.

Marker extension using this models lets us take 𝐹 to be a computable functor with a functor
𝐺 ∶ 𝐹(𝐺𝑟𝑎𝑝ℎ𝑠) → 𝐺𝑟𝑎𝑝ℎ𝑠 such that 𝐹 and 𝐺 are pseudo-inverse (𝐺 ∘ 𝐹(𝒢) ≅ 𝒢 and
𝐹 ∘ 𝐺( ̂𝒢) ≅ ̂𝒢).

Corollary (R. ’21)
For every graph 𝒢 there is a graph ̂𝐺 such that

𝐷𝑔𝑆𝑝≈( ̂𝒢) = {d ∶ d′ ∈ 𝐷𝑔𝑆𝑝∼(𝒢)}.
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Application: Feferman’s
completeness theorem



Feferman’s completeness theorem

Let 𝑇 be a theory given by a Σ0
1 predicate 𝑅, i.e., 𝜑 ∈ 𝑇 ⟺ 𝑅(⌜𝜑⌝). The uniform reflection

principle for 𝑇 is the theory

𝑅𝐹𝑁(𝑇 ) = 𝑇 ∪ {∀𝑥(𝑃𝑟𝑣(𝑇 , ⌜𝜑( ̇𝑥)⌝) → 𝜑(𝑥) ∶ 𝜑(𝑥) a first-order formula}.

Given a well-order 𝐿 and a theory 𝑇 we can iterate 𝑅𝐹𝑁 along 𝐿, i.e., for 𝑎 ∈ 𝐿,
𝑅𝐹𝑁𝐿,𝑎(𝑇 ) = 𝑇 ∪ ⋃𝑏<𝐿𝑎 𝑅𝐹𝑁(𝑅𝐹𝑁𝐿,𝑏(𝑇 )), and 𝑅𝐹𝑁𝐿 = ⋃𝑎∈𝐿 𝑅𝐹𝑁𝐿,𝑎(𝑇 ).

Theorem (Feferman ’62)
For every true arithmetical sentence 𝜑, there is 𝑎 ∈ 𝒪 such that 𝑅𝐹𝑁𝑎(PA) ⊢ 𝜑. Moreover, we
can choose 𝑎 such that |𝑎| < 𝜔𝜔𝜔+1

.
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Better bounds

The bound in Feferman’s completeness theorem is quite generous, Turing (’39) showed that for
every true Π0

1 sentence 𝜑 there is an ordinal notation 𝑎 with |𝑎| = 𝜔 + 1 such that
𝑅𝐹𝑁𝑎(PA) ⊢ 𝜑 (for a broad class of reflection principles).

Theorem (Pakhomov, R. wip)
For every true Π0

2𝑛+1 sentence 𝜑, there exists 𝑎 ∈ 𝒪 with |𝑎| = 𝜔𝑛 + 1 such that

𝑅𝐹𝑁𝑎(PA) ⊢ 𝜑.
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Lemma
Let 𝑛 ∈ 𝜔. Then for every Π0

2𝑛+1 formula 𝜑(𝑥), there is a computable function 𝑓 such that ACA0
proves that for any 𝑖

𝜑𝑓(𝑖) ≅ {
𝜔𝑛 𝜑(𝑖)
𝜔𝑛(1 + ℚ) ¬𝜑(𝑖)

.

ACA0 is the subsystem of second-order arithmetic consisting of the basic axioms, the induction
scheme and the comprehension scheme for arithmetical sets.

Proof idea of Theorem: Let 𝐿 be the linear ordering for 𝜑(0), then ACA0 ⊢ 𝑊𝑂(𝐿) ↔ 𝜑.
Show that ACA0 + 𝑊𝑂(𝐿) is conservative over PA + 𝑇 𝐼(𝐿) and that
𝑅𝐹𝑁(𝑅𝐹𝑁𝐿(PA)) ⊢ 𝑇 𝐼(𝐿). It follows that 𝑅𝐹𝑁(𝑅𝐹𝑁𝐿(PA)) ⊢ 𝜑.
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Optimality

Deciding whether a computable linear ordering is isomorphic to 𝜔𝑛 + 1 is hard. The optimal
Scott sentence is a computable Πin

2𝑛+1 sentence and thus the set of indeces of isomorphic
computable copies is Π0

2𝑛+1 complete, as is the set of true Π0
2𝑛+1 sentences.

Theorem (Pakhomov, R. wip)
There exists a true Π0

2𝑛 sentence 𝜑 such that for any computable well-ordering 𝐿 of order type
≤ 𝜔𝑛 𝑅𝐹𝑁𝐿(PA) ⊬ 𝜑.
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