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SETTING THE SCENE

Computable structure: A structure § in vocabulary 7is computable if there is an algorithm that

computes RS, £, ¢$

¢ forall R f;,c; € Ton acomputable universe S.

T,W‘,M,: Extends first-order logic by allowing countable conjunctions and disjunctions.
10“ = Hg‘...ﬁnite quantifier free formulas.

T2 formulas: N,y Y20:(2T, ) 0, € i
Scott’s theorem: Every countable structure has a Scott sentence in L, ,, classifying it among
countable structures.

Lopez Escobar theorem: The Lwlw definable subsets correspond with the invariant Borel subsets
on Mod(T) .
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Recallz € X < FuVvIwR(z,u,v,w).

At stage s, for every u < s, run a strategy that activates if |g0fR(

> |30fR('

x,u,—)rS m,u,f)fs_l .

1. If you don’t have a coding location ¢;, pick an unused coding location.
2. Add new element to the end of your coding location.
3. Restart all strategies for v > wu.
Example: P frieo >~ 5 P f e =)
QDhR(x) —OHNEEENONENONEENONNONEEN O NEEEEEEEEE - ONEENO -

w-2 zelX
Php(z) =
"r(@) w otherwise



A PAIR OF STRUCTURES

We have witnessed that the isomorphism problem for (w - 2, w) is (X3, I19)-hard. In fact it is

complete, as “There exists a left limit point” is Eg.

1. Constructed hp using our function f5 (for (Eg, Hg)) and injury.

2. (w -2, w) possessing “more structure” allows to absorb injury.

3. II"-th(w) C II*-th(n), TP -th(w - 2) C IIP-th(w)

4. w has a II3" Scott sentence, thus we can not code more in pairs involving w.

Can we prove something general?
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We have witnessed that the isomorphism problem for (w - 2, w) is (X3, I19)-hard. In fact it is
complete, as “There exists a left limit point” is Eg.

1. Constructed hp using our function f5 (for (Eg, Hg)) and injury.
2. (w -2, w) possessing “more structure” allows to absorb injury.

3. II"-th(w) C II*-th(n), TP -th(w - 2) C IIP-th(w)
4

. w has a II35' Scott sentence, thus we can not code more in pairs involving w.

Can we prove something general?

Theorem (Ash-Knight '90)
For every computable ordinal o and every EgaH X C w, there is a computable function f such
that
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THE PAIRS OF STRUCTURES THEOREM

Theorem (Ash-Knight '90)
For o a computable ordinal, let § and & be computable structures such that §; <, 8, and

{84, 81} is a-friendly. Then for any TI set X there is a computable function f such that

S, z€X
gp-x% .
D=\ s, v x

<, are the asymmetric & back-and-forth relation coming out of Karp's work related to Scott's

—(C:

isomorphism theorem.

S, <, 8 ifIIP-th(8;) C II"-th(S,).

[’

(8,)ier is a-friendly if the structures §; are uniformly computable and for v < «
{(4,5,a,b) : (8;,a) <, (5;,b)} is computably enumerable, uniformly in .
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- Proved using Ash and Knight's ae-system, a system for iterated priority constructions.
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Harrington’s worker method, Montalban’s true stage machinery or game meta theorem.



PROOF AND A VARIATION

- Proved using Ash and Knight's ae-system, a system for iterated priority constructions.
- Proof is prime example of a proof using systems for priority constructions, e.g., a-systems,
Harrington’s worker method, Montalban’s true stage machinery or game meta theorem.

Theorem (Ash-Knight '90)

For o a computable ordinal, let (8;);c.,» S be computable structures such that (8,8, );c,, are
a-friendly and for each 8 < awand a € &, thereisiand b € §; such that
Hg’—th(é’, a) C Hiﬁn—th(é’i,@). Then for every TTII set X, there exists a computable function f

such that

1EW

§ zeX
8, forsome i, if:z:¢X'
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MARKER EXTENSIONS USING PAIRS OF STRUCTURES

Marker ‘89 devised a method to extend a X0 axiomatizable theory T'to a theory T” that is E%H
axiomatizable, not E?L axiomatizable but preserves other model-theoretic properties.

We can do something similar using pairs of structures for Lwlw theories.

Theorem (Goncharov-Harizanov-Knight-McCoy-Miller-Solomon '05)
Let o be a computable successor ordinal and 8y, &, be computable a-friendly structures such

that Sy =5 &4 for B < a, then for any AY set X, there is a computable function f such that

Sy reX

gom% .
f(=) S, wé X



MARKER EXTENSIONS USING PAIRS OF STRUCTURES

Given G produce new structure G~ by replacing edges with copies of 8, and non-edges with & .

Formally: G~ isan L U {V/1,0/3} structure where we have a bijection f : G — Vand the L-reduct
of O(f(a), f(b),—) is isomorphic to 8 if aEb and 8§ if ~aEb, no L-symbol holds on elements of V'
and the sets V, and O(a, b, —) for a, b € Vare pairwise disjoint.

G can then be transformed to a graph using standard techniques.
If additionally every 8, satisfies a IT'™ sentence not satisfied by 8;_;, then we get.

1. If G has Scott rank 3, then G~ has Scott rank e + f3.
2. If G has a copy computable in d, then G~ has a copy computable in every ¢ with c@ >d

1
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APPLICATIONS IN COMPUTABLE STRUCTURE THEORY

Successfully used in the last two decades to lift results in computable structure theory.

Example:

Isomorphism spectrum of 8§, DgSp~(8) = {deg(8;) : §; = 8}

Theorem
1. (Slaman; Wehner '98) There is S with DgSp~(8) = {d >, 0}.
2. (GHKMMS '05) For every computable successor ordinal «, there is a structure with
DgSp.(8) = non-low, = {d : d® > 0@},
3. (Greenberg-Montalban-Slaman "13) There is 8 with DgSp~(8) = {d : d ¢ HY P}.



PAIRS OF STRUCTURES FOR SETS OF REALS

Say that distinguishing & from & is Hg hard, if there is a computable operator I : 2N — 2N
such that for any Hg XCoN e ~ Spifx € XandI'* =2 &, otherwise.

Theorem (Montalban (2nd book draft))

Let w be a computable ordinal and 8, and & are computable a-friendly structures with

8y <., 8y, then distinguishing 8y from 8 is 1Y -hard.
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2%-COMPLETE EQUIVALENCE RELATIONS

Let F be a binary relation on a Polish space X and F'be a binary relation on a Polish space Y,
then E is Borel reducible to F, E <p F'if there is a Borel f : X — Y'such that for all

20,1 € X, woEwy iff f(2o) Ff(2).
If £ €@'andforevery I' € I', F' <y E, then Eis I'-complete.
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2%-COMPLETE EQUIVALENCE RELATIONS

Let F be a binary relation on a Polish space X and F'be a binary relation on a Polish space Y,
then E is Borel reducible to F, E <p F'if there is a Borel f : X — Y'such that for all
Zo, 1 € X, xoExy iff f(xy)F f(xy).

If £ €@'andforevery I' € I', F' <y E, then Eis I'-complete.
The space Mod(T) of T-structures with universe N has a natural Polish topology given by basic
open sets of structures extending a finite structure.

Theorem (Louveau, Rosendal '05)
The embeddability relation on graphs is a Ei—complete pre-order. The bi-embeddability relation

on graphs is a 2%—complete equivalence relation.

8y and &, are elementary bi-embeddable, §, ~ &, ifand only if §; < §; and §; < 8.
Question (SD Friedman, Moto Ros '11): Is elementary bi-embeddability on graphs 2% complete?

14



REDUCING EMBEDDABILITY TO ELEMENTARY EMBEDDABILITY

Theorem (R. '21)
Elementary embeddability on graphs is a E%—complete pre-order and elementary

bi-embeddability is a 2%—complete equivalence relation.
Proved by giving F' := G qphs < B Graphs:

1. Marker extension using pairs of structures.

2. Computably transform resulting structures into a graph using standard techniques.
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Fuhrken '66 gave an example of a theory T'with 280 non-isomorphic minimal models, ie. $; < &

implies § = 8.
T =Th((2% (x = 0+ T)yeg<w, {7 : 0 C x})pe9<w))  Shelah 78

Take (0) and (1). They satisfy the conditions of GHKMMS theorem for ov = 2.

Marker extension using this models lets us take F'to be a computable functor with a functor
G : F(Graphs) — Graphs such that F'and G are pseudo-inverse (G o F'(§) = G and

~

FoG(S) =9

Corollary (R. '21) ~
For every graph G there is a graph GG such that

DgSp.(9) = {d:d’ € DgSp_(9)}.
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FEFERMAN'S COMPLETENESS THEOREM

Let T'be a theory given by a E(l) predicate R, ie, o € T < R("¢"). The uniform reflection
principle for T'is the theory

RFN(T) =T U{Vz(Prv(T, p(2)") = ¢(x) : p(z) afirst-order formula}.

Given a well-order L and a theory T'we can iterate RF'N along L, ie, fora € L,
RFNL’a(T) =TU Ub<La, RFN(RFNLJ)(T)), and RFNL = UaeL RFNL’Q(T).

Theorem (Feferman '62)
For every true arithmetical sentence ¢, there is a € O such that RF N®(PA) k= ¢. Moreover, we

w+1
can choose a such that |a| < w*



BETTER BOUNDS

The bound in Feferman’s completeness theorem is quite generous, Turing ('39) showed that for
every true H? sentence ¢ there is an ordinal notation a with |a| = w + 1 such that
RFEN*(PA) F ¢ (for a broad class of reflection principles).



BETTER BOUNDS

The bound in Feferman’s completeness theorem is quite generous, Turing ('39) showed that for
every true H? sentence ¢ there is an ordinal notation a with |a| = w + 1 such that
RFEN*(PA) F ¢ (for a broad class of reflection principles).

Theorem (Pakhomov, R. wip)
For every true HgnH sentence ¢, there exists a € O with |a| = w™ + 1 such that

RFN®(PA) F .



Lemma
Let n € w. Then for every H8n+1 formula <p(a;) there is a computable function f such that ACA,

proves that for any 1
w" (%)
w1+ Q) —p(7)

~

Pre) =

ACA is the subsystem of second-order arithmetic consisting of the basic axioms, the induction

scheme and the comprehension scheme for arithmetical sets.
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Lemma
Let n € w. Then for every H8n+1 formula <p(a;) there is a computable function f such that ACA,

) o(1)
Pri) =

proves that for any 1
w1+ Q) —p(7)

ACA is the subsystem of second-order arithmetic consisting of the basic axioms, the induction
scheme and the comprehension scheme for arithmetical sets.

Proof idea of Theorem: Let L be the linear ordering for ¢(0), then ACA, = WO(L)  ¢.
Show that ACA, + WO(L) is conservative over PA + T'I (L) and that
RFN(RFN, (PA)) - TI(L). it follows that REN(RFN, (PA)) F .

19



OPTIMALITY

Deciding whether a computable linear ordering is isomorphic to w™ + 1 is hard. The optimal
Scott sentence is a computable Hi2nn+1 sentence and thus the set of indeces of isomorphic
computable copies is H8n+1 complete, as is the set of true H8n+1 sentences.
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OPTIMALITY

Deciding whether a computable linear ordering is isomorphic to w™ + 1 is hard. The optimal
Scott sentence is a computable Hi2nn+1 sentence and thus the set of indeces of isomorphic
computable copies is H8n+1 complete, as is the set of true Hgn+1 sentences.

Theorem (Pakhomov, R. wip)

There exists a true Hgn sentence  such that for any computable well-ordering L of order type
< w® RENE(pA) ¥ .

20
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