Pairs of Structures: Variations and Applications

Dino Rossegger
University of California, Berkeley and Technische Universität Wien
ASL Annual Meeting 2023, University of California, Irvine

INDEX

1. Pairs of structures
2. Application: Analytic complete equivalence relations
3. Application: Feferman's completeness theorem joint w/ Fedor Pakhomov

Pairs of Structures

Setting the scene

Computable structure: A structure \mathcal{S} in vocabulary τ is computable if there is an algorithm that computes $R_{i}^{\mathcal{S}}, f_{i}^{\mathcal{S}}, c_{i}^{\mathcal{S}}$ for all $R, f_{i}, c_{i} \in \tau$ on a computable universe S.

Setting the scene

Computable structure: A structure \mathcal{S} in vocabulary τ is computable if there is an algorithm that computes $R_{i}^{\mathcal{S}}, f_{i}^{\mathcal{S}}, c_{i}^{\mathcal{S}}$ for all $R, f_{i}, c_{i} \in \tau$ on a computable universe S.
$L_{\omega_{1} \omega}$: Extends first-order logic by allowing countable conjunctions and disjunctions.
$\Sigma_{0}^{\mathrm{in}}=\Pi_{0}^{\mathrm{in}} \ldots$...inite quantifier free formulas.
$\Pi_{\alpha}^{\mathrm{in}}$ formulas: $\bigwedge_{i \in \mathbb{N}} \forall \bar{x} \theta_{i}(\bar{x}, \bar{y}) \quad \theta_{i} \in \Sigma_{<\alpha}^{\mathrm{in}}$

Setting the scene

Computable structure: A structure \mathcal{S} in vocabulary τ is computable if there is an algorithm that computes $R_{i}^{\mathcal{S}}, f_{i}^{\mathcal{S}}, c_{i}^{\mathcal{S}}$ for all $R, f_{i}, c_{i} \in \tau$ on a computable universe S.
$L_{\omega_{1} \omega}$: Extends first-order logic by allowing countable conjunctions and disjunctions.
$\Sigma_{0}^{\mathrm{in}}=\Pi_{0}^{\mathrm{in}} \ldots$...inite quantifier free formulas.
$\Pi_{\alpha}^{\mathrm{in}}$ formulas: $\bigwedge_{i \in \mathbb{N}} \forall \bar{x} \theta_{i}(\bar{x}, \bar{y}) \quad \theta_{i} \in \Sigma_{<\alpha}^{\mathrm{in}}$
Scott's theorem: Every countable structure has a Scott sentence in $L_{\omega_{1} \omega}$ classifying it among countable structures.

Lopez Escobar theorem: The $L_{\omega_{1} \omega}$ definable subsets correspond with the invariant Borel subsets on $\operatorname{Mod}(\tau)$.

Let $X \subseteq \omega$ be Π_{2}^{0}, i.e., $x \in X \Longleftrightarrow \forall u \exists v R(x, u, v)$.

WARM-UP

Let $X \subseteq \omega$ be Π_{2}^{0}, i.e., $x \in X \Longleftrightarrow \forall u \exists v R(x, u, v)$.

Define a computable function f_{R} as

$$
\varphi_{f_{R}(x)}\left(\left\langle y_{1}, y_{2}\right\rangle\right)= \begin{cases}1 & y_{1} \leq y_{2} \wedge \forall z<y_{2} \exists v R(x, z, v) \\ 0 & y_{2}<y_{1} \wedge \forall z<y_{2} \exists v R(x, z, v) \\ \uparrow & \text { otherwise }\end{cases}
$$

WARM-UP

Let $X \subseteq \omega$ be Π_{2}^{0}, i.e., $x \in X \Longleftrightarrow \forall u \exists v R(x, u, v)$.

Define a computable function f_{R} as

$$
\begin{aligned}
& \varphi_{f_{R}(x)}\left(\left\langle y_{1}, y_{2}\right\rangle\right)= \begin{cases}1 & y_{1} \leq y_{2} \wedge \forall z<y_{2} \exists v R(x, z, v) \\
0 & y_{2}<y_{1} \wedge \forall z<y_{2} \exists v R(x, z, v) \\
\uparrow & \text { otherwise }\end{cases} \\
& \varphi_{f_{R}(x)} \cong \begin{cases}\omega & x \in X \\
\{n: n \in \mathbb{N}\} & x \notin X\end{cases}
\end{aligned}
$$

Let $X \subseteq \mathbb{N}$ be Σ_{3}^{0}, i.e., $x \in X \Longleftrightarrow \exists u \forall v \exists w R(x, u, v, w)$.
Define a computable function g_{R} as

$$
\varphi_{g_{R}(x)}=\langle 0,0\rangle<\left\langle 1, \varphi_{f_{R(0,-)}}\right\rangle<\langle 0,1\rangle<\left\langle 2, \varphi_{f_{R(1,-)}}\right\rangle<\langle 0,2\rangle<\ldots
$$

Let $X \subseteq \mathbb{N}$ be Σ_{3}^{0}, i.e., $x \in X \Longleftrightarrow \exists u \forall v \exists w R(x, u, v, w)$.
Define a computable function g_{R} as

$$
\begin{gathered}
\varphi_{g_{R}(x)}=\langle 0,0\rangle<\left\langle 1, \varphi_{f_{R(0,-)}}\right\rangle<\langle 0,1\rangle<\left\langle 2, \varphi_{f_{R(1,-)}}\right\rangle<\langle 0,2\rangle<\ldots \\
\varphi_{g_{R}(x)} \cong \begin{cases}\left\{\omega \cdot n, \omega^{2}: n \in \mathbb{N}\right\} & x \in X \\
\omega & \text { otherwise }\end{cases}
\end{gathered}
$$

Recall $x \in X \Longleftrightarrow \exists u \forall v \exists w R(x, u, v, w)$.

$$
\varphi_{h_{R}(x), 0}=\bigcirc \quad c_{0} \quad \circ \quad c_{1} \quad \circ \quad c_{2} \quad \circ \quad \cdots
$$

WARM-UP

Recall $x \in X \Longleftrightarrow \exists u \forall v \exists w R(x, u, v, w)$.

$$
\varphi_{h_{R}(x), 0}=\bigcirc \quad c_{0} \quad \bigcirc \quad c_{1} \quad \bigcirc \quad c_{2} \quad \bigcirc \quad \cdots
$$

At stage s, for every $u<s$, run a strategy that activates if $\left|\varphi_{f_{R(x, u,-)}, s}\right|>\left|\varphi_{f_{R(x, u,-), s-1} \mid}\right|$

1. If you don't have a coding location c_{i}, pick an unused coding location.
2. Add new element to the end of your coding location.
3. Restart all strategies for $v>u$.

Recall $x \in X \Longleftrightarrow \exists u \forall v \exists w R(x, u, v, w)$.

$$
\varphi_{h_{R}(x), 0}=\bigcirc \quad c_{0} \quad \bigcirc \quad c_{1} \quad \bigcirc \quad c_{2} \quad \circ \quad \cdots
$$

At stage s, for every $u<s$, run a strategy that activates if $\left|\varphi_{f_{R(x, u,-)}, s}\right|>\left|\varphi_{f_{R(x, u,-), s-1} \mid}\right|$

1. If you don't have a coding location c_{i}, pick an unused coding location.
2. Add new element to the end of your coding location.
3. Restart all strategies for $v>u$.

Example: $\varphi_{f_{R(x, 0,-)}} \cong 5, \varphi_{f_{R(x, 1,-)}} \cong \omega$

$$
\varphi_{h_{R}(x)} \cong \begin{cases}\omega \cdot 2 & x \in X \\ \omega & \text { otherwise }\end{cases}
$$

A PAIR OF STRUCTURES

We have witnessed that the isomorphism problem for $(\omega \cdot 2, \omega)$ is $\left(\Sigma_{3}^{0}, \Pi_{3}^{0}\right)$-hard. In fact it is complete, as "There exists a left limit point" is Σ_{3}^{0}.

1. Constructed h_{R} using our function $f_{R}\left(\right.$ for $\left.\left(\Sigma_{2}^{0}, \Pi_{2}^{0}\right)\right)$ and injury.
2. $(\omega \cdot 2, \omega)$ possessing "more structure" allows to absorb injury.
3. $\Pi_{1}^{\mathrm{in}}-\operatorname{th}(\omega) \subseteq \Pi_{1}^{\mathrm{in}}-\operatorname{th}(n), \Pi_{3}^{\mathrm{in}}-\operatorname{th}(\omega \cdot 2) \subseteq \Pi_{3}^{\mathrm{in}}-\operatorname{th}(\omega)$
4. ω has a Π_{3}^{in} Scott sentence, thus we can not code more in pairs involving ω.

Can we prove something general?

A PAIR OF STRUCTURES

We have witnessed that the isomorphism problem for $(\omega \cdot 2, \omega)$ is $\left(\Sigma_{3}^{0}, \Pi_{3}^{0}\right)$-hard. In fact it is complete, as "There exists a left limit point" is Σ_{3}^{0}.

1. Constructed h_{R} using our function $f_{R}\left(\right.$ for $\left.\left(\Sigma_{2}^{0}, \Pi_{2}^{0}\right)\right)$ and injury.
2. $(\omega \cdot 2, \omega)$ possessing "more structure" allows to absorb injury.
3. $\Pi_{1}^{\mathrm{in}}-\operatorname{th}(\omega) \subseteq \Pi_{1}^{\mathrm{in}}-\operatorname{th}(n), \Pi_{3}^{\mathrm{in}}-\operatorname{th}(\omega \cdot 2) \subseteq \Pi_{3}^{\mathrm{in}}-\operatorname{th}(\omega)$
4. ω has a Π_{3}^{in} Scott sentence, thus we can not code more in pairs involving ω.

Can we prove something general?

Theorem (Ash-Knight '90)

For every computable ordinal α and every $\Sigma_{2 \alpha+1}^{0} X \subseteq \omega$, there is a computable function f such that

$$
\varphi_{f(x)} \cong \begin{cases}\omega^{\alpha} \cdot 2 & x \in X \\ \omega^{\alpha} & x \notin X\end{cases}
$$

THE PAIRS OF STRUCTURES THEOREM

Theorem (Ash-Knight '90)
For α a computable ordinal, let \mathcal{S}_{0} and \mathcal{S}_{1} be computable structures such that $\mathcal{S}_{1} \leq_{\alpha} \mathcal{S}_{0}$ and $\left\{\mathcal{S}_{0}, \mathcal{S}_{1}\right\}$ is α-friendly. Then for any Π_{α}^{0} set X there is a computable function f such that

$$
\varphi_{f(x)} \cong \begin{cases}\mathcal{S}_{0} & x \in X \\ \mathcal{S}_{1} & x \notin X\end{cases}
$$

THE PAIRS OF STRUCTURES THEOREM

Theorem (Ash-Knight '90)
For α a computable ordinal, let \mathcal{S}_{0} and \mathcal{S}_{1} be computable structures such that $\mathcal{S}_{1} \leq_{\alpha} \mathcal{S}_{0}$ and $\left\{\mathcal{S}_{0}, \mathcal{S}_{1}\right\}$ is α-friendly. Then for any Π_{α}^{0} set X there is a computable function f such that

$$
\varphi_{f(x)} \cong \begin{cases}\mathcal{S}_{0} & x \in X \\ \mathcal{S}_{1} & x \notin X\end{cases}
$$

\leq_{α} are the asymmetric α back-and-forth relation coming out of Karp's work related to Scott's isomorphism theorem.
$\mathcal{S}_{1} \leq_{\alpha} \mathcal{S}_{0}$ if $\Pi_{\alpha}^{\mathrm{in}}-\operatorname{th}\left(\mathcal{S}_{1}\right) \subseteq \Pi_{\alpha}^{\mathrm{in}}-\operatorname{th}\left(\mathcal{S}_{0}\right)$.

THE PAIRS OF STRUCTURES THEOREM

Theorem (Ash-Knight '90)
For α a computable ordinal, let \mathcal{S}_{0} and \mathcal{S}_{1} be computable structures such that $\mathcal{S}_{1} \leq_{\alpha} \mathcal{S}_{0}$ and $\left\{\mathcal{S}_{0}, \mathcal{S}_{1}\right\}$ is α-friendly. Then for any Π_{α}^{0} set X there is a computable function f such that

$$
\varphi_{f(x)} \cong \begin{cases}\mathcal{S}_{0} & x \in X \\ \mathcal{S}_{1} & x \notin X\end{cases}
$$

\leq_{α} are the asymmetric α back-and-forth relation coming out of Karp's work related to Scott's isomorphism theorem.
$\mathcal{S}_{1} \leq_{\alpha} \mathcal{S}_{0}$ if $\Pi_{\alpha}^{\mathrm{in}}-\operatorname{th}\left(\mathcal{S}_{1}\right) \subseteq \Pi_{\alpha}^{\mathrm{in}}-\operatorname{th}\left(\mathcal{S}_{0}\right)$.
$\left(\mathcal{S}_{i}\right)_{i \in I}$ is α-friendly if the structures \mathcal{S}_{i} are uniformly computable and for $\gamma<\alpha$ $\left\{(i, j, \bar{a}, \bar{b}):\left(\mathcal{S}_{i}, \bar{a}\right) \leq_{\gamma}\left(\mathcal{S}_{j}, \bar{b}\right)\right\}$ is computably enumerable, uniformly in γ.

PROOF AND A VARIATION

- Proved using Ash and Knight's α-system, a system for iterated priority constructions.
- Proof is prime example of a proof using systems for priority constructions, e.g., α-systems, Harrington's worker method, Montalbán's true stage machinery or game meta theorem.

PROOF AND A VARIATION

- Proved using Ash and Knight's α-system, a system for iterated priority constructions.
- Proof is prime example of a proof using systems for priority constructions, e.g., α-systems, Harrington's worker method, Montalbán's true stage machinery or game meta theorem.

Theorem (Ash-Knight '90)

For α a computable ordinal, let $\left(\mathcal{S}_{i}\right)_{i \in \omega}, \mathcal{S}$ be computable structures such that $\left(\mathcal{S}, \mathcal{S}_{i}\right)_{i \in \omega}$ are α-friendly and for each $\beta<\alpha$ and $\bar{a} \in \mathcal{S}$, there is i and $\bar{b} \in \mathcal{S}_{i}$ such that $\Pi_{\beta}^{\mathrm{in}}$-th $(\mathcal{S}, \bar{a}) \subseteq \Pi_{\beta}^{\mathrm{in}}$-th $\left(\mathcal{S}_{i}, \bar{b}\right)$. Then for every $\Pi_{\alpha}^{\mathrm{in}}$ set X, there exists a computable function f such that

$$
\varphi_{f(x)} \cong \begin{cases}\mathcal{S} & x \in X \\ \mathcal{S}_{i} & \text { for some } i, \text { if } x \notin X\end{cases}
$$

MARKER EXTENSIONS USING PAIRS OF STRUCTURES

Marker ' 89 devised a method to extend a Σ_{n}^{0} axiomatizable theory T to a theory T^{\prime} that is Σ_{n+1}^{0} axiomatizable, not Σ_{n}^{0} axiomatizable but preserves other model-theoretic properties.

We can do something similar using pairs of structures for $L_{\omega_{1} \omega}$ theories.
Theorem (Goncharov-Harizanov-Knight-McCoy-Miller-Solomon '05)
Let α be a computable successor ordinal and $\mathcal{S}_{0}, \mathcal{S}_{1}$ be computable α-friendly structures such that $\mathcal{S}_{0}={ }_{\beta} \mathcal{S}_{1}$ for $\beta<\alpha$, then for any Δ_{α}^{0} set X, there is a computable function f such that

$$
\varphi_{f(x)} \cong \begin{cases}\mathcal{S}_{0} & x \in X \\ \mathcal{S}_{1} & x \notin X\end{cases}
$$

MARKER EXTENSIONS USING PAIRS OF STRUCTURES

Given \mathcal{G} produce new structure $\mathcal{G}^{-\alpha}$ by replacing edges with copies of \mathcal{S}_{0} and non-edges with \mathcal{S}_{1}.

Formally: $\mathcal{G}^{-\alpha}$ is an $L \cup\{V / 1, O / 3\}$ structure where we have a bijection $f: G \rightarrow V$ and the L-reduct of $O(f(a), f(b),-)$ is isomorphic to \mathcal{S}_{0} if $a E b$ and \mathcal{S}_{1} if $\neg a E b$, no L-symbol holds on elements of V and the sets V, and $O(a, b,-)$ for $a, b \in V$ are pairwise disjoint.
$\mathcal{G}^{-\alpha}$ can then be transformed to a graph using standard techniques.
If additionally every \mathcal{S}_{i} satisfies a $\Pi_{\alpha}^{\mathrm{in}}$ sentence not satisfied by \mathcal{S}_{1-i}, then we get.

1. If \mathcal{G} has Scott rank β, then $\mathcal{G}^{-\alpha}$ has Scott rank $\alpha+\beta$.
2. If \mathcal{G} has a copy computable in \mathbf{d}, then $\mathcal{G}^{-\alpha}$ has a copy computable in every \mathbf{c} with $\mathbf{c}^{(\alpha)} \geq \mathbf{d}$.

APPLICATIONS IN COMPUTABLE STRUCTURE THEORY

Successfully used in the last two decades to lift results in computable structure theory.
Example:
Isomorphism spectrum of $\mathcal{S}, D g S p_{\cong}(\mathcal{S})=\left\{\operatorname{deg}\left(\mathcal{S}_{1}\right): \mathcal{S}_{1} \cong \mathcal{S}\right\}$

APPLICATIONS IN COMPUTABLE STRUCTURE THEORY

Successfully used in the last two decades to lift results in computable structure theory.

Example:

Isomorphism spectrum of $\mathcal{S}, D g S p_{\cong}(\mathcal{S})=\left\{\operatorname{deg}\left(\mathcal{S}_{1}\right): \mathcal{S}_{1} \cong \mathcal{S}\right\}$
Theorem

1. (Slaman; Wehner '98) There is \mathcal{S} with $D g S p_{\cong}(\mathcal{S})=\left\{\mathbf{d}>_{T} \mathbf{0}\right\}$.

APPLICATIONS IN COMPUTABLE STRUCTURE THEORY

Successfully used in the last two decades to lift results in computable structure theory.

Example:

Isomorphism spectrum of $\mathcal{S}, D g S p_{\cong}(\mathcal{S})=\left\{\operatorname{deg}\left(\mathcal{S}_{1}\right): \mathcal{S}_{1} \cong \mathcal{S}\right\}$
Theorem

1. (Slaman; Wehner '98) There is \mathcal{S} with $D g S p_{\cong}(\mathcal{S})=\left\{\mathbf{d}>_{T} \mathbf{0}\right\}$.
2. (GHKMMS '05) For every computable successor ordinal α, there is a structure with

$$
D g S p_{\cong}(\mathcal{S})=\text { non-low } w_{\alpha}=\left\{\mathbf{d}: \mathbf{d}^{(\alpha)}>\mathbf{0}^{(\alpha)}\right\}
$$

APPLICATIONS IN COMPUTABLE STRUCTURE THEORY

Successfully used in the last two decades to lift results in computable structure theory.

Example:

Isomorphism spectrum of $\mathcal{S}, D g S p_{\cong}(\mathcal{S})=\left\{\operatorname{deg}\left(\mathcal{S}_{1}\right): \mathcal{S}_{1} \cong \mathcal{S}\right\}$
Theorem

1. (Slaman; Wehner '98) There is \mathcal{S} with $D g S p_{\cong}(\mathcal{S})=\left\{\mathbf{d}>_{T} \mathbf{0}\right\}$.
2. (GHKMMS '05) For every computable successor ordinal α, there is a structure with

$$
D g S p_{\cong}(\mathcal{S})=\text { non-low } w_{\alpha}=\left\{\mathbf{d}: \mathbf{d}^{(\alpha)}>\mathbf{0}^{(\alpha)}\right\}
$$

3. (Greenberg-Montalbán-Slaman '13) There is \mathcal{S} with $\operatorname{DgSp} \cong(\mathcal{S})=\{\mathbf{d}: \mathbf{d} \notin H Y P\}$.

Palrs of structures for sets of reals

Say that distinguishing \mathcal{S}_{0} from \mathcal{S}_{1} is Π_{α}^{0} hard, if there is a computable operator $\Gamma: 2^{\mathbb{N}} \rightarrow 2^{\mathbb{N}}$ such that for any $\Pi_{\alpha}^{0} X \subseteq 2^{\mathbb{N}}, \Gamma^{x} \cong \mathcal{S}_{0}$ if $x \in X$ and $\Gamma^{x} \cong \mathcal{S}_{1}$ otherwise.

Theorem (Montalbán (2nd book draft))
Let α be a computable ordinal and \mathcal{S}_{0} and \mathcal{S}_{1} are computable α-friendly structures with $\mathcal{S}_{0} \leq_{\alpha} \mathcal{S}_{1}$, then distinguishing \mathcal{S}_{0} from \mathcal{S}_{1} is Π_{α}^{0}-hard.

Application: Analytic complete

EQUIVALENCE RELATIONS

Let E be a binary relation on a Polish space X and F be a binary relation on a Polish space Y, then E is Borel reducible to $F, E \leq_{B} F$ if there is a Borel $f: X \rightarrow Y$ such that for all $x_{0}, x_{1} \in X, x_{0} E x_{1}$ iff $f\left(x_{0}\right) F f\left(x_{1}\right)$.

If $E \in \Gamma$ and for every $F \in \Gamma, F \leq_{B} E$, then E is Γ-complete.

$\boldsymbol{\Sigma}_{1}^{1}$-COMPLETE EQUIVALENCE RELATIONS

Let E be a binary relation on a Polish space X and F be a binary relation on a Polish space Y, then E is Borel reducible to $F, E \leq_{B} F$ if there is a Borel $f: X \rightarrow Y$ such that for all $x_{0}, x_{1} \in X, x_{0} E x_{1}$ iff $f\left(x_{0}\right) F f\left(x_{1}\right)$.

If $E \in \Gamma$ and for every $F \in \Gamma, F \leq_{B} E$, then E is Γ-complete.
The space $\operatorname{Mod}(\tau)$ of τ-structures with universe \mathbb{N} has a natural Polish topology given by basic open sets of structures extending a finite structure.

Theorem (Louveau, Rosendal '05)
The embeddability relation on graphs is a $\boldsymbol{\Sigma}_{1}^{1}$-complete pre-order. The bi-embeddability relation on graphs is a $\boldsymbol{\Sigma}_{1}^{1}$-complete equivalence relation.
\mathcal{S}_{0} and \mathcal{S}_{1} are elementary bi-embeddable, $\mathcal{S}_{0} \approx \mathcal{S}_{1}$ if and only if $\mathcal{S}_{0} \preccurlyeq \mathcal{S}_{1}$ and $\mathcal{S}_{1} \preccurlyeq \mathcal{S}_{0}$. Question (SD Friedman, Moto Ros '11): Is elementary bi-embeddability on graphs $\boldsymbol{\Sigma}_{1}^{1}$ complete?

Reducing embeddability to elementary embeddability

Theorem (R. '21)
Elementary embeddability on graphs is a $\boldsymbol{\Sigma}_{1}^{1}$-complete pre-order and elementary bi-embeddability is a $\boldsymbol{\Sigma}_{1}^{1}$-complete equivalence relation.

Proved by giving $F: \hookrightarrow_{\text {Graphs }} \leq_{B} \preccurlyeq_{\text {Graphs }}$.

1. Marker extension using pairs of structures.
2. Computably transform resulting structures into a graph using standard techniques.

Fuhrken '66 gave an example of a theory T with $2^{\aleph_{0}}$ non-isomorphic minimal models, i.e. $\mathcal{S}_{1} \preccurlyeq \mathcal{S}$ implies $\mathcal{S}=\mathcal{S}_{1}$.

$$
T=\operatorname{Th}\left(\left(2^{\omega},(x \mapsto \sigma+x)_{\sigma \in 2^{<\omega}},(\{x: \sigma \subset x\})_{x \in 2^{<\omega}}\right)\right) \quad \text { Shelah '78 }
$$

Take $\langle\overline{0}\rangle$ and $\langle\overline{1}\rangle$. They satisfy the conditions of GHKMMS theorem for $\alpha=2$.

Fuhrken '66 gave an example of a theory T with $2^{\aleph_{0}}$ non-isomorphic minimal models, i.e. $\mathcal{S}_{1} \preccurlyeq \mathcal{S}$ implies $\mathcal{S}=\mathcal{S}_{1}$.

$$
T=\operatorname{Th}\left(\left(2^{\omega},(x \mapsto \sigma+x)_{\sigma \in 2^{<\omega}},(\{x: \sigma \subset x\})_{x \in 2^{<\omega}}\right)\right) \quad \text { Shelah '78 }
$$

Take $\langle\overline{0}\rangle$ and $\langle\overline{1}\rangle$. They satisfy the conditions of GHKMMS theorem for $\alpha=2$.
Marker extension using this models lets us take F to be a computable functor with a functor $G: F($ Graphs $) \rightarrow$ Graphs such that F and G are pseudo-inverse $(G \circ F(\mathcal{G}) \cong \mathcal{G}$ and $F \circ G(\hat{\mathcal{G}}) \cong \hat{\mathcal{G}})$.

Fuhrken '66 gave an example of a theory T with $2^{\aleph_{0}}$ non-isomorphic minimal models, i.e. $\mathcal{S}_{1} \preccurlyeq \mathcal{S}$ implies $\mathcal{S}=\mathcal{S}_{1}$.

$$
T=\operatorname{Th}\left(\left(2^{\omega},(x \mapsto \sigma+x)_{\sigma \in 2^{<\omega}},(\{x: \sigma \subset x\})_{x \in 2^{<\omega}}\right)\right) \quad \text { Shelah '78 }
$$

Take $\langle\overline{0}\rangle$ and $\langle\overline{1}\rangle$. They satisfy the conditions of GHKMMS theorem for $\alpha=2$.
Marker extension using this models lets us take F to be a computable functor with a functor $G: F($ Graphs $) \rightarrow$ Graphs such that F and G are pseudo-inverse $(G \circ F(\mathcal{G}) \cong \mathcal{G}$ and $F \circ G(\hat{\mathcal{G}}) \cong \hat{\mathcal{G}})$.

Corollary (R. '21)
For every graph \mathcal{G} there is a graph \hat{G} such that

$$
D g S p_{\approx}(\hat{\mathcal{G}})=\left\{\mathbf{d}: \mathbf{d}^{\prime} \in D g S p_{\sim}(\mathcal{G})\right\}
$$

Application: Feferman's

COMPLETENESS THEOREM

FEFERMAN'S COMPLETENESS THEOREM

Let T be a theory given by a Σ_{1}^{0} predicate R, i.e., $\varphi \in T \Longleftrightarrow R\left(\left\ulcorner\varphi^{\urcorner}\right)\right.$. The uniform reflection principle for T is the theory

$$
R F N(T)=T \cup\left\{\forall x \left(\operatorname{Prv}\left(T,\left\ulcorner\varphi(\dot{x})^{\urcorner}\right) \rightarrow \varphi(x): \varphi(x) \text { a first-order formula }\right\} .\right.\right.
$$

FEFERMAN'S COMPLETENESS THEOREM

Let T be a theory given by a Σ_{1}^{0} predicate R, i.e., $\varphi \in T \Longleftrightarrow R\left({ }^{\ulcorner } \varphi^{\urcorner}\right)$. The uniform reflection principle for T is the theory

$$
R F N(T)=T \cup\left\{\forall x \left(\operatorname{Prv}\left(T,\left\ulcorner\varphi(\dot{x})^{\urcorner}\right) \rightarrow \varphi(x): \varphi(x) \text { a first-order formula }\right\} .\right.\right.
$$

Given a well-order L and a theory T we can iterate $R F N$ along L, i.e., for $a \in L$,

$$
R F N_{L, a}(T)=T \cup \bigcup_{b<L_{a}} R F N\left(R F N_{L, b}(T)\right) \text {, and } R F N^{L}=\bigcup_{a \in L} R F N_{L, a}(T)
$$

FEFERMAN'S COMPLETENESS THEOREM

Let T be a theory given by a Σ_{1}^{0} predicate R, i.e., $\varphi \in T \Longleftrightarrow R\left({ }^{\ulcorner } \varphi^{\urcorner}\right)$. The uniform reflection principle for T is the theory

$$
R F N(T)=T \cup\left\{\forall x \left(\operatorname{Prv}\left(T,\left\ulcorner\varphi(\dot{x})^{\urcorner}\right) \rightarrow \varphi(x): \varphi(x) \text { a first-order formula }\right\} .\right.\right.
$$

Given a well-order L and a theory T we can iterate $R F N$ along L, i.e., for $a \in L$,

$$
R F N_{L, a}(T)=T \cup \bigcup_{b<L_{a}} R F N\left(R F N_{L, b}(T)\right) \text {, and } R F N^{L}=\bigcup_{a \in L} R F N_{L, a}(T) .
$$

Theorem (Feferman '62)
For every true arithmetical sentence φ, there is $a \in \mathcal{O}$ such that $R F N^{a}(\mathrm{PA}) \vdash \varphi$. Moreover, we can choose a such that $|a|<\omega^{\omega^{\omega+1}}$.

BETTER BOUNDS

The bound in Feferman's completeness theorem is quite generous, Turing ('39) showed that for every true Π_{1}^{0} sentence φ there is an ordinal notation a with $|a|=\omega+1$ such that $R F N^{a}(\mathrm{PA}) \vdash \varphi$ (for a broad class of reflection principles).

BETTER BOUNDS

The bound in Feferman's completeness theorem is quite generous, Turing ('39) showed that for every true Π_{1}^{0} sentence φ there is an ordinal notation a with $|a|=\omega+1$ such that $R F N^{a}(\mathrm{PA}) \vdash \varphi$ (for a broad class of reflection principles).

Theorem (Pakhomov, R. wip)
For every true $\Pi_{2 n+1}^{0}$ sentence φ, there exists $a \in \mathcal{O}$ with $|a|=\omega^{n}+1$ such that

$$
R F N^{a}(\mathrm{PA}) \vdash \varphi
$$

Lemma

Let $n \in \omega$. Then for every $\Pi_{2 n+1}^{0}$ formula $\varphi(x)$, there is a computable function f such that ACA $_{0}$ proves that for any i

$$
\varphi_{f(i)} \cong \begin{cases}\omega^{n} & \varphi(i) \\ \omega^{n}(1+\mathbb{Q}) & \neg \varphi(i)\end{cases}
$$

ACA_{0} is the subsystem of second-order arithmetic consisting of the basic axioms, the induction scheme and the comprehension scheme for arithmetical sets.

Lemma

Let $n \in \omega$. Then for every $\Pi_{2 n+1}^{0}$ formula $\varphi(x)$, there is a computable function f such that ACA_{0} proves that for any i

$$
\varphi_{f(i)} \cong \begin{cases}\omega^{n} & \varphi(i) \\ \omega^{n}(1+\mathbb{Q}) & \neg \varphi(i)\end{cases}
$$

ACA_{0} is the subsystem of second-order arithmetic consisting of the basic axioms, the induction scheme and the comprehension scheme for arithmetical sets.

Proof idea of Theorem: Let L be the linear ordering for $\varphi(0)$, then $\mathrm{ACA}_{0} \vdash W O(L) \leftrightarrow \varphi$. Show that $\mathrm{ACA}_{0}+W O(L)$ is conservative over PA $+T I(L)$ and that $R F N\left(R F N_{L}(\mathrm{PA})\right) \vdash T I(L)$. It follows that $R F N\left(R F N_{L}(\mathrm{PA})\right) \vdash \varphi$.

OPTIMALITY

Deciding whether a computable linear ordering is isomorphic to $\omega^{n}+1$ is hard. The optimal Scott sentence is a computable $\prod_{2 n+1}^{\mathrm{in}}$ sentence and thus the set of indeces of isomorphic computable copies is $\Pi_{2 n+1}^{0}$ complete, as is the set of true $\Pi_{2 n+1}^{0}$ sentences.

OPTIMALITY

Deciding whether a computable linear ordering is isomorphic to $\omega^{n}+1$ is hard. The optimal Scott sentence is a computable $\Pi_{2 n+1}^{\mathrm{in}}$ sentence and thus the set of indeces of isomorphic computable copies is $\Pi_{2 n+1}^{0}$ complete, as is the set of true $\Pi_{2 n+1}^{0}$ sentences.

Theorem (Pakhomov, R. wip)
There exists a true $\Pi_{2 n}^{0}$ sentence φ such that for any computable well-ordering L of order type $\leq \omega^{n} R F N^{L}(\mathrm{PA}) \nvdash \varphi$.

1. Ash, Chris., and Julia F. Knight. "Pairs of Recursive Structures." Annals of Pure and Applied Logic 46, no. 3 (1990): 211-34.
2. Ash, Chris, and Julia F. Knight. Computable Structures and the Hyperarithmetical Hierarchy. Vol. 144. Newnes, 2000.
3. Goncharov, Sergey, Valentina Harizanov, Julia Knight, Charles McCoy, Russell Miller, and Reed Solomon. "Enumerations in Computable Structure Theory." Annals of Pure and Applied Logic 136, no. 3 (November 2005): 219-46. https://doi.org/10.1016/j.apal.2005.02.001.
4. Montalbán, Antonio. Computable Structure Theory: Beyond the Arithmetic. draft. https://math.berkeley.edu/ antonio/CSTpart2_DRAFT.pdf.
5. Rossegger, Dino. "Degree Spectra of Analytic Complete Equivalence Relations." The Journal of Symbolic Logic 87, no. 4 (2022): 1663-76. https://doi.org/10.1017/jsl.2021.82.
