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Introduction — Models of arithmetic

This project started with the following question on mathoverflow:

How complicated is the set of countable models of true arithmetic?

• True arithmetic TA: The first-order theory of (ℕ, 0, 1, +, ⋅)
• True arithmetic is complicated: Tarski’s undefinability of truth theorem, Tennenbaum’s
theorem, Solovay’s characterization of degrees of nonstandard models, non-standard
models have no finite Scott rank (Montalbán, R. 23)

• We classify the set of models of a theory using its Borel complexity.
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Setup — Borel complexity

Borel hierarchy stratifies subsets of Polish spaces. For countable 𝛼, and 𝑋 ⊆ 𝑀𝑜𝑑(𝜏)

𝑋 ∈ ΣΣΣ0
1 ⟺ 𝑋 open 𝑋 ∈ ΠΠΠ0

1 ⟺ 𝑋 closed

𝑋 ∈ ΣΣΣ0
𝛼 ⟺ 𝑋 = ⋃

𝑖∈𝜔
(𝑋𝑖 ∈ ΠΠΠ0

<𝛼) 𝑋 ∈ ΠΠΠ0
𝛼 ⟺ 𝑋 = ⋂

𝑖∈𝜔
(𝑋𝑖 ∈ ΣΣΣ0

<𝛼)

Given a countable relational vocabulary 𝜏, the set of countable 𝜏-structures with universe 𝜔
admits a canonical Polish topology.

Fix an enumeration 𝜑𝑖(𝑥0, … , 𝑥𝑖) of the atomic 𝜏-formulas and let the atomic diagram of a
𝜏-structure 𝒜 with universe 𝜔 be

𝐷(𝒜)(𝑖) = {
1 𝜑𝑖[𝑥0 … 𝑥𝑖 ↦ 0 … 𝑖]𝒜

0 otherwise

𝒜 ↦ 𝐷(𝒜) is an homeomorphism Mod(𝜏) → 2𝜔 , giving a Polish topology on Mod(𝜏).
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Setup — Infinitary logic

𝐿𝜔1𝜔 is similar to (finitary) first-order logic except it allows countable conjunctions and
disjunctions.

For 𝜑 ∈ 𝐿𝜔1𝜔 and 𝛼 countable

𝜑 ∈ Σin
0 = Πin

0 ⟺ 𝜑 finite and quantifier-free

𝜑 ∈ Σin
𝛼 ⟺ 𝜑 = ⋁⋁ ∃ ̄𝑥𝑖𝜑𝑖 , 𝜑𝑖 ∈ Πin

<𝛼

𝜑 ∈ Πin
𝛼 ⟺ 𝜑 = ⋀⋀ ∀ ̄𝑥𝑖𝜑𝑖 , 𝜑𝑖 ∈ Σin

<𝛼

• For every 𝐿𝜔1𝜔 formula 𝜑 there is 𝛼 < 𝜔1 and 𝜓 ∈ Σin
𝛼 such that 𝜑 ≡ 𝜓.

• (Lopez-Escobar 1969) An isomorphism invariant 𝑋 ⊆ 𝑀𝑜𝑑(𝜏) is Borel iff it is 𝐿𝜔1𝜔
definable.

• (Vaught 1974) An isomophism invariant 𝑋 ⊆ 𝑀𝑜𝑑(𝜏) isΠΠΠ0
𝛼 iff it is Πin

𝛼 -definable.
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First-order axiomatizability and Borel complexity

Consider the class of torsion groups, i.e., the class of groups satisfying:

∀𝑥 (𝑥 = 𝑒 ∨ 𝑥 ⋅ 𝑥 = 𝑒 ∨ 𝑥 ⋅ 𝑥 ⋅ 𝑥 = 𝑒 ∨ 𝑥 ⋅ 𝑥 ⋅ 𝑥 = 𝑒 ∨ … )

A simple compactness argument shows that the class of torsion groups is not first-order
axiomatizable.

Theorem (Keisler 1965)
If a finitary first-order formula 𝜑 is equivalent to 𝜓 ∈ Πin

𝑛 , then there is a ∀𝑛-formula 𝜃 such that
𝜑 ≡ 𝜃.

Keisler proved this theorem for 𝐿∞𝜔 using games. Harrison-Trainor and Kretschmer recently gave
a new proof using forcing.
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Wadge reducibility

Take the formula 𝜑 = ⋀⋀
𝜓∈TA

𝜓. Then Mod(𝜑) = 𝑀𝑜𝑑(TA) ∈ ΠΠΠ0
𝜔 .

How to show that it is not simpler?

Definition
Let 𝑋 be a Polish space and 𝐴 ⊆ 𝑋, then for any point class Γ, 𝐴 is Γ-complete if 𝐴 ∈ Γ(𝑋)
and for every 𝐵 ∈ Γ(𝑌 ) for any Polish 𝑌, 𝐵 is Wadge reducible to 𝐴, 𝐵 ≤𝑊 𝐴, i.e., there is
continuous 𝑓 ∶ 𝑌 → 𝑋 with 𝑓(𝑦) ∈ 𝐴 if and only 𝑦 ∈ 𝐵.

ΣΣΣ0
𝛼

ΠΠΠ0
𝛼

𝐷2(ΣΣΣ0
𝛼) 𝐷3(ΣΣΣ0

𝛼) …

ΠΠΠ0
𝛼+1

ΣΣΣ0
𝛼+1ΔΔΔ0

𝛼+1

… …

{∅}

{2𝜔}

Δ0
1 = 𝑐𝑙𝑜𝑝𝑒𝑛

Is the complexity of a theory’s set of models related to the quantifier complexity of its
axiomatizations?
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First-order theories without
bounded quantifier axiomatizations



Main theorem - Unbounded case

Theorem (Andrews, Gonzalez, Lempp, R., Zhu in preparation)
For a complete first-order theory 𝑇, Mod(𝑇 ) isΠΠΠ0

𝜔-complete if and only if 𝑇 has no
axiomatization by first-order formulas of bounded quantifier-complexity.

Note that we do not need 𝑇 to be related to arithmetic.

This directly implies that complete theories without bounded quantifier axiomatizations can not
be axiomatized by Πin

𝑛 sentences for any 𝑛.

Proposition
There is an incomplete theory T, not axiomatizable by sentences of bounded quantifier-complexity,
such that Mod(𝑇 ) ∈ ΣΣΣ0

𝜔 .
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Proof of theorem

(⇐) Say, 𝑆 is a set of ∃𝑛-formulas axiomatizing Mod(𝑇 ), then ⋀
𝜑∈𝑆

𝜑 is Πin
𝑛+1 and hence by

Lopez-Escobar, Mod(𝑇 ) is notΠΠΠ0
𝜔-complete.

The (⇒) direction follows from the following lemma.

Lemma
Let 𝑇 be a complete first-order theory for which there is a collection of theories {𝑇𝑛}𝑛∈𝜔 such
that for all 𝑛 ∈ 𝜔, 𝑇 ≠ 𝑇𝑛 but 𝑇 ∩ ∃𝑛 = 𝑇𝑛 ∩ ∃𝑛 . Then Mod(𝑇 ) isΠΠΠ0

𝜔-complete. Indeed, for
eachΠΠΠ0

𝜔-set 𝑃, there is a continuous function mapping any 𝑝 ∈ 𝑃 to a model of 𝑇, and any
𝑝 ∉ 𝑃 to a model satisfying 𝑇𝑛 for some 𝑛 ∈ 𝜔.

𝑃 = ⋂(𝑃𝑛 ∈ ΠΠΠ0
𝑛)

𝑝 ∈ 𝑃𝑛? 𝑝 ∈ 𝑃𝑛+1?

build 𝒜𝑝 ⊧ 𝑇𝑛

… build 𝒜𝑝 ⊧ 𝑇

No

Yes

build 𝒜𝑝 ⊧ 𝑇𝑛+1
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Proof of Lemma

The lemma relies on a theorem due to Solovay, later generalized by Knight.

Theorem (Solovay 1982, Knight 1999)
Let 𝑇 be a complete theory. Suppose 𝑅 ≤𝑇 𝑋 is an enumeration of a Scott set 𝑆, with functions
𝑡𝑛 which are Δ0

𝑛(𝑋) uniformly in 𝑛, such that for each 𝑛, lim𝑠 𝑡𝑛(𝑠) is an 𝑅-index for 𝑇 ∩ ∃𝑛 ,
and for all 𝑠, 𝑡𝑛(𝑠) is an 𝑅-index for a subset of 𝑇 ∩ ∃𝑛 . Then 𝑇 has a model ℬ, representing 𝑆,
with ℬ ≤𝑇 𝑋.
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A Scott set 𝑆 ⊆ 2𝜔 is a set satisfying
1. 𝑥 ≤𝑇 𝑦 and 𝑦 ∈ 𝑆 ⟹ 𝑥 ∈ 𝑆,
2. 𝑥, 𝑦 ∈ 𝑆 ⟹ 𝑥 ⊕ 𝑦 ∈ 𝑆,
3. and if 𝑥 ∈ 𝑆 codes an infinite binary tree 𝑇𝑥 , then 𝑆 ∩ [𝑇𝑥] ≠ ∅.
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𝑅 ∈ 2𝜔 is an enumeration of a countable Scott set 𝑆 if {𝑅[𝑖] ∶ 𝑖 ∈ 𝜔} = 𝑆.
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The lemma relies on a theorem due to Solovay, later generalized by Knight.

Theorem (Solovay 1982, Knight 1999)
Let 𝑇 be a complete theory. Suppose 𝑅 ≤𝑇 𝑋 is an enumeration of a Scott set 𝑆, with functions
𝑡𝑛 which are Δ0

𝑛(𝑋) uniformly in 𝑛, such that for each 𝑛, lim𝑠 𝑡𝑛(𝑠) is an 𝑅-index for 𝑇 ∩ ∃𝑛 ,
and for all 𝑠, 𝑡𝑛(𝑠) is an 𝑅-index for a subset of 𝑇 ∩ ∃𝑛 . Then 𝑇 has a model ℬ, representing 𝑆,
with ℬ ≤𝑇 𝑋.

A countable model ℳ represents a countable Scott set 𝑆 if for all complete 𝐵𝑛-types Γ(�̄�, 𝑥)
and all ̄𝑐 ∈ 𝑀:

Γ( ̄𝑐, 𝑥) realized in ℳ ⟺ Γ ∈ 𝑆 and 𝐶𝑜𝑛(Γ( ̄𝑐, 𝑥) ∪ 𝐷𝑖𝑎𝑔𝑒𝑙(ℳ)).
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• Known proofs use methods for iterated Priority constructions
• Original proof uses a Harrington style worker argument
• Version above is due to Knight (1999) and proved using version of 𝛼-systems
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Proof of Lemma ctd

Fix a theory 𝑇 not axiomatizable by bounded quantifier formulas and theories 𝑇𝑛 ≠ 𝑇 such that
𝑇𝑛 ∩ ∃𝑛 = 𝑇 ∩ ∃𝑛 , an enumeration 𝑅 of a Scott set 𝑆 containing 𝑇 , (𝑇𝑛) and a Borel code 𝐶
for a fixedΠΠΠ0

𝜔 set 𝑃 = ⋂ 𝑃𝑛 where 𝑃𝑛 is ∃𝑛 .

In order to prove our Lemma we:

• Given 𝑥 produce (indices) for functions 𝑡𝑛 such that 𝑡𝑛(𝑥(𝑛−1), 𝑠) = 𝑅(𝑇𝑛+1) if
𝑥 ∉ 𝑃𝑛,𝑠 and 𝑡𝑛(𝑥(𝑛−1), 𝑠) = 𝑅(𝑇 ) otherwise. This can be done recursive in
𝑥 ⊕ (𝑅 ⊕ 𝑇 ⊕ ⨁𝑛 𝑇𝑛)′ ⊕ 𝐶.

• Verify that Solovay’s theorem is continuous

Corollary
Mod(PA), and Mod(𝑇 ) for 𝑇 a completion of PA areΠΠΠ0

𝜔-complete.

Follows from Tarski’s undefinability of truth and existence of partial truth predicates. To get 𝑇𝑛
for PA, break ∃𝑛 induction.
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Examples of theories without
bounded quantifier axiomatizations



Sequential theories

What is the role of induction in PA not having bounded quantifier axiomatizations? What
happens with completions of PA−? We asked Roman Kossak who asked Ali Enayat and Albert
Visser.

Theorem (Enayat, Visser 2023)
No complete sequential theory in finite vocabulary has an axiomatization by sentences of
bounded quantifier complexity.
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Sequential theories

Definition (Pudlák 1983, Pakhomov and Visser 2022)
A (possibly incomplete) 𝜏-theory 𝑇 is sequential if it admits a definitional extension to Adjunctive
set theory AS(𝑇 ), namely, in 𝜏 ⊔ {∈}, we have the axioms

1. ∃𝑥 ∀𝑦 (¬𝑦 ∈ 𝑥) (”the empty set exists”), and
2. ∀𝑥 ∀𝑦 ∃𝑧 ∀𝑤 (𝑤 ∈ 𝑧 ↔ (𝑤 ∈ 𝑥 ∨ 𝑤 = 𝑦)) (“𝑥 ∪ {𝑦} exists”).

In essence, sequential theories allow for coding of finite sequences as in Gödel’s 𝛽-function.

Examples of sequential theories:
PA, 𝐼Δ0 + exp, 𝑍𝐹, 𝐾𝑃, even PA− (Jeřábek 2012), AS = AS(∅) (Pakhomov, Visser 2022), but
not Robinson’s 𝑄 (Visser 2017).
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Enayat und Visser’s result

Theorem (Enayat, Visser 2023)
No complete sequential theory in finite vocabulary has an axiomatization by sentences of
bounded quantifier complexity.

The finiteness condition here is essential. Consider the Morleyization of true arithmetic (add a
relation 𝑅𝜑 for every formula 𝜑). This has a compositional axiomatization in the style of Tarski’s
definition of satisfaction, and hence an axiomatization by ∀2 formulas.

Corollary
If 𝑇 is sequential and complete in finite vocabulary, then Mod(𝑇 ) isΠΠΠ0

𝜔-complete.

Visser will give a talk on this on March 12 in the MOPA Seminar (zoom)
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First-order theories with bounded
axiomatizations



The main theorem

Theorem (AGLRZ)
Let 𝑇 be a theory and 𝑛 ∈ 𝜔. Then the following are equivalent.

1. 𝑇 has a ∀𝑛-axiomatization but no ∀𝑛−1-axiomatization.
2. The Wadge degree of Mod(𝑇 ) is in [ΣΣΣ0

𝑛−1,ΠΠΠ0
𝑛].

• The intervals [ΣΣΣ0
𝑛−1,ΠΠΠ0

𝑛] contain infinitely many Wadge degrees asΔΔΔ0
𝑛 splits into ℵ1 many

degrees.

• (AGLRZ) Examples of complete ∃𝑛-axiomatizable theories of Wadge degreesΣΣΣ0
𝑛 , 𝐷2(ΣΣΣ0

𝑛),
ΠΠΠ0

𝑛+1 for all 𝑛 ≥ 3. We don’t get Σ0
2 and smaller degrees as:

Proposition (AGLRZ)

There is no complete consistent first-order theory 𝑇 such that Mod(𝑇 ) ∈ ΣΣΣ0
2 .

The reason for this is that Σin
2 sentences cannot express that structures are infinite.
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The core lemmas

Lemma
Suppose 𝑛 ∈ 𝜔 and 𝑇 + and 𝑇 − are distinct complete theories such that 𝑇 − ∩ ∃𝑛 ⊆ 𝑇 + ∩ ∃𝑛 .
Then for any 𝑋 ∈ ΣΣΣ0

𝑛 there is a Wadge reduction 𝑓 such that 𝑓(𝑥) ∈ 𝑀𝑜𝑑(𝑇 +) if 𝑥 ∈ 𝑋, and
𝑓(𝑥) ∈ Mod(𝑇 −) otherwise. In particular, Mod(𝑇 +) isΣΣΣ0

𝑛-hard, and Mod(𝑇 −) isΠΠΠ0
𝑛-hard.

The proof of this lemma is similar to the proof of the core lemma for the unbounded case.

A level-sentence set for ℒ is either the set of ∃𝑛- or the set of ∀𝑛-sentences in ℒ for some 𝑛.

Lemma
Let Λ be a level-sentence set, and let 𝑇 be a theory which is not Λ-axiomatizable (i.e., ThΛ(𝑇 )
does not imply 𝑇). Then there are complete theories 𝑇0, 𝑇1 such that 𝑇 ⊆ 𝑇0 , 𝑇 is inconsistent
with 𝑇1 , and 𝑇 ℎΛ(𝑇0) ⊆ 𝑇 ℎΛ(𝑇1).

The proof of this lemma is a compactness argument.
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Corollaries

Theorem (AGLRZ, cf Keisler 1965)
If a finitary first-order formula 𝜑 is equivalent to 𝜓 ∈ Πin

𝑛 (𝐿∞𝜔), then there is a ∀𝑛-formula 𝜃
such that 𝜑 ≡ 𝜃.

• Our proof only works for 𝐿𝜔1,𝜔 , not for 𝐿∞,𝜔 .
• Keisler’s proof used games
• Harrison-Trainor and Kretschmer (2023) used forcing with elementary extensions
• Our proof is much simpler, and “essentially effective”
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Effectiveness considerations



Witnessing reductions

Definition
We say that 𝐷 witnesses the Γ-hardness of 𝑌 ⊆ 2𝜔 if for every Borel code 𝐶 for a set 𝑋 ∈ Γ,
there is a Turing operator Φ so that Φ𝐷⊕𝐶⊕𝑝 ∈ 𝑌 if and only if 𝑝 ∈ 𝑋 for every 𝑝 ∈ 2𝜔 . If Φ
does not depend on 𝐶, then 𝐷 uniformly witnesses the Γ-hardness of 𝑌. A Turing degree d
(uniformly) witnesses the Γ-hardness of 𝑌 if it contains 𝐷 (uniformly) witnessing the Γ-hardness
of 𝑌.

Our main lemmas rely on Solovay’s result which was initially used to calculate the Turing degrees
of models of TA. Thus, they should be inherently effective.
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WitnessingΠΠΠ0
𝜔-completeness of foundational theories

Theorem
1. Let 𝑇 be a completion of PA. If d computes a non-standard model of 𝑇, then d uniformly
witnesses theΠΠΠ0

𝜔-hardness of Mod(𝑇 ).
2. Let 𝑇 be a completion of PA− . If d does not compute a non-standard model of 𝑇, then it
does not witness theΣΣΣ0

2-hardness of Mod(𝑇 ).

If 𝑇 is a completion of PA, then every Turing degree either uniformly witnesses theΠΠΠ0
𝜔-hardness

of Mod(𝑇 ) or fails to witness even theΣΣΣ0
2-hardness of Mod(𝑇 ).

Recall that 𝑋 ⊆ 𝜔 is PA over 𝑌 ⊆ 𝜔 if 𝑌 ≤𝑇 𝑋 and for every 𝑌-computable infinite binary
tree 𝑇, 𝑋 computes a path through 𝑇.

Theorem
Let 𝑇 be a theory without ∀𝑛-axiomatization and let 𝐷 be PA over 𝑇. Then 𝐷 uniformly
witnesses theΣΣΣ0

𝑛-hardness of Mod(𝑇 ).
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A question

Let ∃≤
1 be the set of bounded existential formulas in the language of PA and 𝐼∃≤

1 the induction
principle for these formulas.

Theorem (Wilmers 1985)
If 𝒜 ⊧ 𝐼∃≤

1 , then 𝒜 is computable if and only if 𝒜 is standard, i.e., 𝒜 ≅ ℕ.

Theorem
Let 𝑇 be a complete consistent extension of PA− + 𝐼∃≤

1 . Then Mod(𝑇 ) isΠΠΠ0
𝜔-complete, but 0

does not witness theΣΣΣ0
2-hardness of Mod(𝑇 ).

(Shepherdson 1964) There are computable non-standard models of PA− .

Question. Is there a completion 𝑇 of PA− such that 0 witnesses theΠΠΠ0
𝜔-hardness of Mod(𝑇 )?
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Thank you!
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