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INTRODUCTION — MODELS OF ARITHMETIC

This project started with the following question on mathoverflow:
How complicated is the set of countable models of true arithmetic?

- True arithmetic T'A: The first-order theory of (N, 0,1, +, -)

- True arithmetic is complicated: Tarski's undefinability of truth theorem, Tennenbaum’s
theorem, Solovay's characterization of degrees of nonstandard models, non-standard
models have no finite Scott rank (Montalban, R. 23)

- We classify the set of models of a theory using its Borel complexity.
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Given a countable relational vocabulary 7, the set of countable 7-structures with universe w

admits a canonical Polish topology.

Fix an enumeration ¢, (Zg, ... , ;) of the atomic 7~formulas and let the atomic diagram of a

T-structure A with universe w be

D(A) (i) = {

1 ¢;zg...x; = 0...4]~4

0 otherwise

A+ D(A) is an homeomorphism Mod(7) — 2%, giving a Polish topology on Mod (7).
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SETUP — INFINITARY LOGIC

Lwlw is similar to (finitary) first-order logic except it allows countable conjunctions and

disjunctions.

Forp € L, ,, and a countable
p € TP =TI < ¢ finite and quantifier-free
pETY <= SOZ\X/EL@‘%’ ,p; € T2,
pelll < o= MNVZp, o €,

- Forevery L, , formula ¢ thereis & < wy and ¢ € Y0 such that ¢ = ).
+ (Lopez-Escobar 1969) An isomorphism invariant X C Mod(7) is Borel iff itis L, ,,

definable.
- (Vaught 1974) An isomophism invariant X C Mod(7) is II? iff it is TTI"-definable.
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Consider the class of torsion groups, i.e,, the class of groups satisfying:

Ve(x=eVz-z=eVzr-z-x=eVr-z-x=e€V..)

A simple compactness argument shows that the class of torsion groups is not first-order
axiomatizable.

Theorem (Keisler 1965)

If a finitary first-order formula  is equivalent to ¢ € TI'™, then there is a ¥, -formula 0 such that
p=0.

Keisler proved this theorem for L, using games. Harrison-Trainor and Kretschmer recently gave
a new proof using forcing.
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WADGE REDUCIBILITY

Take the formula ¢ = /X\ 1. Then Mod(p) = Mod(TA) € ITC.

PeTA
How to show that it is not simpler?

Definition
Let X be a Polish space and A C X, then for any point class I, A is ['-complete if A € T'(X)

and for every B € T'(Y) for any Polish Y, B is Wadge reducible to A, B <y, A, i.e, there is
continuous f : Y — X with f(y) € Aifandonlyy € B.

- { oEHeE)

Is the complexity of a theory's set of models related to the quantifier complexity of its

axiomatizations? 6



FIRST-ORDER THEORIES WITHOUT
BOUNDED QUANTIFIER AXIOMATIZATIONS



MAIN THEOREM - UNBOUNDED CASE

Theorem (Andrews, Gonzalez, Lempp, R., Zhu in preparation)
For a complete first-order theory T, Mod(T') is Hg—complete if and only if T has no

axiomatization by first-order formulas of bounded quantifier-complexity.
Note that we do not need T'to be related to arithmetic.

This directly implies that complete theories without bounded quantifier axiomatizations can not
be axiomatized by Hij; sentences for any n.



MAIN THEOREM - UNBOUNDED CASE

Theorem (Andrews, Gonzalez, Lempp, R., Zhu in preparation)
For a complete first-order theory T, Mod(T') is Hg—complete if and only if T has no

axiomatization by first-order formulas of bounded quantifier-complexity.
Note that we do not need T'to be related to arithmetic.

This directly implies that complete theories without bounded quantifier axiomatizations can not

be axiomatized by Hij; sentences for any n.

Proposition
There is an incomplete theory T, not axiomatizable by sentences of bounded quantifier-complexity,
such that Mod(T) € 0.
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PROOF OF THEOREM

<) Say, S'is a set of 3, -formulas axiomatizing Mo , then is TT™™, ; and hence by
S f 3, formulas axiomatizing Mod ('), then A\ __ v is I, and hence b
Lopez-Escobar, Mod(T') is not II? -complete.

The (=) direction follows from the following lemma.

Lemma
Let T'be a complete first-order theory for which there is a collection of theories {Tn}nEw such

that foralln € w, T # T, but TN 3,, = T,, N 3,,. Then Mod(T') is II% -complete. indeed, for
each Hg-set P there is a continuous function mapping any p € Pto a model of I, and any
p ¢ Pto a model satisfying T,, for some n € w.

P=N(P, € mo) build A, F T, || build A, T,
No

P 7 eP 70— . —Jbuild A ET
peP, s D n+1 ut P .




PROOF OF LEMMA

The lemma relies on a theorem due to Solovay, later generalized by Knight.

Theorem (Solovay 1982, Knight 1999)

Let T'be a complete theory. Suppose R <, X is an enumeration of a Scott set .S, with functions
t,, which are A® (X) uniformly in m, such that for each n, lim, t,,(s) is an R-index for T N3,
and for all s, t,,(s) is an R-index for a subset of T'N 3,,. Then T'has a model B, representing S,
with B <, X.
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The lemma relies on a theorem due to Solovay, later generalized by Knight.

Theorem (Solovay 1982, Knight 1999)

Let T'be a complete theory. Suppose R <, X is an enumeration of a Scott set .S, with functions
t,, which are AY (X) uniformly in m, such that for each n, lim, t,,(s) is an R-index for T N 3,,
and for all s, t,,(s) is an R-index for a subset of T'N 3,,. Then T'has a model B, representing S,
with B <, X.

A Scott set S C 2% is a set satisfying
1. z<pyandye S = z €S,
2.z, yeES = x@DyE S,
3. and if x € S codes an infinite binary tree T, then S N [T,,] # 0.
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PROOF OF LEMMA

The lemma relies on a theorem due to Solovay, later generalized by Knight.

Theorem (Solovay 1982, Knight 1999)

Let T'be a complete theory. Suppose R <, X is an enumeration of a Scott set S, with functions
t,, which are A% (X)) uniformly in n, such that for each n, lim ¢,,(s) is an R-index for T N 3,
and for all s, t,,(s) is an R-index for a subset of T'N 3,,. Then T has a model B, representing S,
with B <, X.

A countable model M represents a countable Scott set .S if for all complete ,,-types I'(u, x)
and allc € M:

I'(c,z) realized in M <= T" € S'and Con(I'(¢,z) U Diag,;(IM)).



PROOF OF LEMMA

The lemma relies on a theorem due to Solovay, later generalized by Knight.

Theorem (Solovay 1982, Knight 1999)

Let T'be a complete theory. Suppose R <, X is an enumeration of a Scott set .S, with functions
t,, which are AY (X)) uniformly in n, such that for each n, lim, t,,(s) is an R-index for T N3,
and for all s, t,,(s) is an R-index for a subset of T'N 3,,. Then T has a model B, representing S,
with B < X.

- Known proofs use methods for iterated Priority constructions
- Original proof uses a Harrington style worker argument

- Version above is due to Knight (1999) and proved using version of ai-systems
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In order to prove our Lemma we:
- Given & produce (indices) for functions ¢,, such that t,,(z"~V, s) = R(T,,_,) if
¢ P, and t, (™1 s) = R(T) otherwise. This can be done recursive in

t®(ReTO@ T, &C.

- Verify that Solovay’s theorem is continuous
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Fix a theory T'not axiomatizable by bounded quantifier formulas and theories T}, # T such that
T, N3, =T N3, an enumeration R of a Scott set S containing T, (7},) and a Borel code C
for a fixed IIO set P = (| P,, where P, is 3,,.

In order to prove our Lemma we:

- Given & produce (indices) for functions ¢,, such that t,,(z"~V, s) = R(T,,_,) if
¢ P, and t, (™1 s) = R(T) otherwise. This can be done recursive in
z@(ReTod T,) &C.

- Verify that Solovay’s theorem is continuous

Corollary
Mod(PA), and Mod(T') for T a completion of PA are II? -complete.

Follows from Tarski's undefinability of truth and existence of partial truth predicates. To get T',
for PA, break 3,, induction. 0
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SEQUENTIAL THEORIES

What is the role of induction in PA not having bounded quantifier axiomatizations? What
happens with completions of PA™? We asked Roman Kossak who asked Ali Enayat and Albert
Visser.
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Theorem (Enayat, Visser 2023) . o
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SEQUENTIAL THEORIES

Definition (Pudlak 1983, Pakhomov and Visser 2022)
A (possibly incomplete) 7-theory T'is sequential if it admits a definitional extension to Adjunctive

set theory AS(T'), namely, in 7 Ll { €}, we have the axioms
1. Jx Vy (—y € ) ("the empty set exists”), and
2. Ve VydzVw(w € z > (w € xVw=y)) (“zU{y} exists").

In essence, sequential theories allow for coding of finite sequences as in Godel's S-function.

Examples of sequential theories:
PA, IA, + exp, ZF, KP, even PA™ (Jefabek 2012), AS = AS(0) (Pakhomov, Visser 2022), but
not Robinson’s @) (Visser 2017).



ENAYAT UND VISSER'S RESULT

Theorem (Enayat, Visser 2023) _ o
No complete sequential theory in finite vocabulary has an axiomatization by sentences of

bounded quantifier complexity.

The finiteness condition here is essential. Consider the Morleyization of true arithmetic (add a
relation RSD for every formula ¢). This has a compositional axiomatization in the style of Tarski's
definition of satisfaction, and hence an axiomatization by ¥, formulas.

Corollary
If T'is sequential and complete in finite vocabulary, then Mod(T) is Hg-complete.

Visser will give a talk on this on March 12 in the MOPA Seminar (zoom)



FIRST-ORDER THEORIES WITH BOUNDED
AXIOMATIZATIONS




THE MAIN THEOREM

Theorem (AGLRZ)
Let T'be a theory and n € w. Then the following are equivalent.

1. T'has a V,,-axiomatization but no V,,_; -axiomatization.

2. The Wadge degree of Mod(T') is in [£°_,, TI9].

n—1»
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THE MAIN THEOREM

Theorem (AGLRZ)

Let T'be a theory and n € w. Then the following are equivalent.
1. T'has a V,,-axiomatization but no V,,_; -axiomatization.
2. The Wadge degree of Mod(T') is in [£°_,, TI9].

n—1»

- The intervals [£9

nfl,l'[g] contain infinitely many Wadge degrees as AQL splits into N; many

degrees.
- (AGLRZ) Examples of complete 3, -axiomatizable theories of Wadge degrees 22, D, (2%),
H9L+1 foralln > 3. We don't get Zg and smaller degrees as:

Proposition (AGLRZ)
There is no complete consistent first-order theory T'such that Mod(T') € Zg.

The reason for this is that 212’“ sentences cannot express that structures are infinite.
14



THE CORE LEMMAS

Lemma
Suppose n € wand T and T~ are distinct complete theories such that T- N3, CT+TN3,,.

Then for any X € X0 there is a Wadge reduction f such that f(x) € Mod(T") ifx € X, and
f(x) € Mod(T ) otherwise. In particular, Mod(T") is £9 -hard, and Mod(T~) is I -hard.

The proof of this lemma is similar to the proof of the core lemma for the unbounded case.



THE CORE LEMMAS

Lemma
Suppose n € wand T and T~ are distinct complete theories such that T- N3, CT+TN3,,.

Then for any X € X0 there is a Wadge reduction f such that f(x) € Mod(T") ifx € X, and
f(x) € Mod(T ) otherwise. In particular, Mod(T") is £9 -hard, and Mod(T~) is I -hard.

The proof of this lemma is similar to the proof of the core lemma for the unbounded case.
A level-sentence set for £ is either the set of 3, - or the set of V,, -sentences in £ for some n.

Lemma
Let A be a level-sentence set, and let T'be a theory which is not A-axiomatizable (i.e., ThA(T)
does not imply T). Then there are complete theories Ty, T} such thatT' C T}, T'is inconsistent

with T}, and Thy (Ty) € Thy (1)

The proof of this lemma is a compactness argument.



COROLLARIES

Theorem (AGLRZ, cf Keisler 1965) .
If a finitary first-order formula ¢ is equivalent to ¢ € II* (L), then there is a ¥, -formula
such that ¢ = 6.

- Our proof only works for L )

wy e notfor L .

- Keisler's proof used games
- Harrison-Trainor and Kretschmer (2023) used forcing with elementary extensions
- Our proof is much simpler, and “essentially effective”



EFFECTIVENESS CONSIDERATIONS




WITNESSING REDUCTIONS

Definition
We say that D witnesses the I'-hardness of Y C 2% if for every Borel code C'foraset X € T,

there is a Turing operator ® so that ®P®C®P ¢ Yifand only if p € X for every p € 2% If &
does not depend on C, then D uniformly witnesses the I'-hardness of Y. A Turing degree d
(uniformly) witnesses the I'-hardness of Y'if it contains D (uniformly) witnessing the I"-hardness
of Y.

Our main lemmas rely on Solovay's result which was initially used to calculate the Turing degrees
of models of TA. Thus, they should be inherently effective.



WITNESSING Hg-COMPLETENESS OF FOUNDATIONAL THEORIES

Theorem
1. Let T'be a completion of PA. If d computes a non-standard model of T, then d uniformly
witnesses the II? -hardness of Mod(T).
2. Let T'be a completion of PA™. If d does not compute a non-standard model of T, then it
does not witness the £9-hardness of Mod(T).

If T'is a completion of PA, then every Turing degree either uniformly witnesses the Hg—hardness
of Mod(T") or fails to witness even the ¥9-hardness of Mod (7).



WITNESSING Hg-COMPLETENESS OF FOUNDATIONAL THEORIES

Theorem
1. Let T'be a completion of PA. If d computes a non-standard model of T, then d uniformly

witnesses the II? -hardness of Mod(T).
2. Let T'be a completion of PA™. If d does not compute a non-standard model of T, then it
does not witness the £9-hardness of Mod(T).

If T'is a completion of PA, then every Turing degree either uniformly witnesses the Hg—hardness
of Mod(T") or fails to witness even the ¥9-hardness of Mod (7).

Recall that X C wis PA over Y C wif Y < X and for every Y-computable infinite binary
tree T, X computes a path through T’

Theorem
Let T"be a theory without V', -axiomatization and let D be PA over I’ Then D uniformly

witnesses the .0 -hardness of Mod (T').



A QUESTION

Let EllS be the set of bounded existential formulas in the language of PA and IEIlS the induction

principle for these formulas.

Theorem (Wilmers 1985)
If AE IEI%, then A is computable if and only if A is standard, i.e, A = N.

Theorem
Let T"be a complete consistent extension of PA™ + IEIlg. Then Mod(T) is IT% -complete, but 0

does not witness the £9-hardness of Mod(T).
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A QUESTION

Let EllS be the set of bounded existential formulas in the language of PA and IEIlS the induction

principle for these formulas.

Theorem (Wilmers 1985)
If AE IEI%, then A is computable if and only if A is standard, i.e, A = N.

Theorem
Let T"be a complete consistent extension of PA™ + IEIlg. Then Mod(T) is IT% -complete, but 0

does not witness the £9-hardness of Mod(T).
(Shepherdson 1964) There are computable non-standard models of PA™.

Question. Is there a completion Tof PA™ such that 0 witnesses the IT -hardness of Mod(T')?
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Computable Structure Theory and Interactions

Technische Universitat Wien, July 15-17 2024

A workshop on computable structure theory and its interactions with other areas in logic and mathematics will
take place in Vienna from July 15-17, 2024. If you are interested in attending the workshop please register here
(Invited speakers do not need to register).

Invited Speakers (preliminary, to be extended)
« Jason Block, Brooklyn College — City University of New York
« David Gonzalez, University of California, Berkeley
« Valentina Harizanov, George Washington University
« Dariusz Kalociriski, Polish Academy of Sciences
« Liling Ko, The Ohio State University
« Mateusz Lelyk, University of Warsaw
« Russell Miller, Queens College - City University of New York
« Gianluca Paolini, University of Torino
« Isabella Scott, University of Chicago
« Paul Shafer, University of Leeds
« Stefan Vatev, Sofia University
« Java Darleen Villano, University of Connecticut

Organizers

Vittorio Cipriani, Technische Universitit Wien
Damir Dzhafarov, University of Connecticut
Ekaterina Fokina, Technische Universitit Wien

Dino Rossegger, Technische Universitit Wien

computability.org/csti2024

Thank you!
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