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STRUCTURE OF THE TALK

Countable Borel equivalence relations and groups

Left-orderable groups and their dynamics

Borel complexity of gL

lo

Effective aspects



COUNTABLE BOREL EQUIVALENCE
RELATIONS AND GROUPS



BOREL REDUCIBILITY OF EQUIVALENCE RELATIONS

- Let X be a Polish space (e.g, 2¥, 2%, w®). The set B(X) of Borel subsets of X is the
smallest o-algebra containing all open subsets of X.
- An equivalence relation E on a Polish space X ...
- is Borel if it is a Borel subset of X x X.
- is countable (finite) if every E-class is countable (finite).
-+ is hyperfinite if there are finite E; C E; ; fori € wwith E = [J E;.
- Afunction f : X — Yis Borel, if f~1(A) is Borel for every open A C Y.
- For two Borel equivalence relations 2 and F, EVis Borel reducible to F, 2 <y F'if there is
Borel fsuchthatx E yifand only if f(z) E f(y).
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THEORY OF COUNTABLE BOREL EQUIVALENCE RELATIONS

A countable equivalence relation F'is

- smooth if E < g id*"
- hyperfinite if E =5 Ey: forz,y € 2° x Ey y <= Im(Vn > m)z(n) = y(n)
- universal if for every countable Borel F, [' <y E,

For example B2 where for z,y € 272, ¢ E? y < (39 € F5)Vh z(h) = y(gh),is

universal.

Theorem (Harrington-Kechris-Louveau '90). A Borel equivalence relation E'is either smooth or
E, <p E.

Several examples of intermediate equivalence relations are known.



THEORY OF COUNTABLE BOREL EQUIVALENCE RELATIONS

A countable equivalence relation F'is

- smooth if E < g id*"
- hyperfinite if E =5 Ey: forz,y € 2° x Ey y <= Im(Vn > m)z(n) = y(n)
- universal if for every countable Borel F, [' <y E,

For example B2 where for z,y € 272, ¢ E? y < (39 € F5)Vh z(h) = y(gh),is

universal.

Theorem (Harrington-Kechris-Louveau '90). A Borel equivalence relation E'is either smooth or
E, <p E.

Several examples of intermediate equivalence relations are known.
Theorem (Slaman-Steel '88). Turing equivalence is not hyperfinite.

Question. Is Turing equivalence complete?



CONNECTION WITH GROUPS AND WEISS'S CONJECTURE

Theorem (Feldman-Moore '77). A countable equivalence relation E on X is Borel iff there is a
countable group G such that E'is the orbit equivalence relation of a Borel action of G on X
(G~ X).

A countable group G' is amenable if there is a left-invariant, finitely additive probability measure
on 2€.

Conjecture (Weiss). If E'is the orbit equivalence relation of a Borel action of a countable
amenable group, then E is hyperfinite.

Verified only for a subclass. Most recently by Conley-Jackson-Marks-Seward-Tucker-Drob '23.



LEFT-ORDERABLE GROUPS AND THEIR
DYNAMICS



LEFT-ORDERABILITY OF GROUPS

A group G'is left-orderable if there is a linear ordering < on G such that forall f,g,h € G
g<h = fg< fh ifinadditiong < h = gf < hf then G is bi-orderable.

< partitions G into the positive cone P={g € G: g >id}, P~ ={g7' : g € P"} and

{id}.

This is a characterization, i.e, for every Psuch that G = P U P~! U {id} there is an induced
left-orderingon Gviag <ph < g 'he P
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A group G'is left-orderable if there is a linear ordering < on G such that forall f,g,h € G
g<h = fg< fh ifinadditiong < h = gf < hf then G is bi-orderable.

< partitions G into the positive cone P={g € G: g >id}, P~ ={g7' : g € P"} and

{id}.

This is a characterization, i.e, for every Psuch that G = P U P~! U {id} there is an induced
left-orderingon Gviag <ph < g 'he P

LO(G) = {P C G : Pa positive cone} is a closed subspace of 2% and thus Polish.
Let E,,¢ be the orbit relation of G~ LO(G) via conjugation, i.e, (g,z) — 29 = g 'zg.

Calderoni-Clay: Study the Borel complexity of ElOG for countable groups.



EXAMPLES

Calderoni and Clay gave several examples of groups where E,  is smooth, hyperfinite, or universal.

- (Calderoni-Clay '22) Elljf is universal for n > 2.

- If G is torsion-free abelian, then Eg is smooth.

- (Calderoni-Clay '23) EIBOS“’n) is not smooth forn > 1 where
BS(1,n) = (a,b: b~ tab = a™)



EXAMPLES

Calderoni and Clay gave several examples of groups where E,  is smooth, hyperfinite, or universal.

- (Calderoni-Clay '22) Elljf is universal for n > 2.
- If GG is torsion-free abelian, then Eg is smooth.

- (Calderoni-Clay '23) EB (n) is not smooth forn > 1 where
BS(1,n) = (a,b: b~ 7 ab = a")

Question (Calderoni-Clay '23) Is E hyperﬁmte’?

Question (Calderoni-Clay '22) Are there groups such that Eg is intermediate?



DYNAMICAL REALIZATION

Theorem (Ghys '01). Let G be a countable group. Then tfae:

(1) G'is left-orderable.
(2) G acts faithfully on the real line by orientation preserving homeomorphism, i.e, there is a
faithful representation D : G — Homeo, (R).

Idea for (2) = (1): Fix a dense sequence (x;) in R and define Pp, as g € Pj, if for the least
i such that D(g)(z;) # =;, D(g)(x;) > z;.
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Theorem (Ghys '01). Let G be a countable group. Then tfae:

(1) G'is left-orderable.
(2) G acts faithfully on the real line by orientation preserving homeomorphism, i.e, there is a
faithful representation D : G — Homeo, (R).

Idea for (2) = (1): Fix a dense sequence (x;) in R and define Pp, as g € Pj, if for the least
i such that D(g)(z;) # =;, D(g)(x;) > z;.

(1) = (2) Fixan enumeration (g;) of G and define a map t : G — R that preserves < by
t(gy) = 0 and

max{t(go), - t(g;11)} +1 i (V) <i)g; < g;
t(g;) = q min{t(gy),...t(g;_1)} — 1 if (V5 <1i)g; < g,
Ugm)+t(ga) 79 € (Gms 9 ) My < iand (V5 < 0)g; & (9m, 9n)



Let G ~ t(G) via g(t(g;)) = t(gg, ). This action can be extended to obtain a faithful
representation D : G + Homeo™" (R).

Note that this effectivizes:

1. There is a Turing operator ® such that ®(G, P, g) = D(g).
2. Similarly if we are given D, G and (z;) we can compute a positive cone P.



BS(1,n)

BOREL COMPLEXITY OF Elo




RIVAS' ANALYSIS OF LEFT-ORDERINGS

BS(1,n) = {a,b: b lab=a"}

BS(1, n) splits over
1—27Z[1/n] »8s(l,n) >Z—1

e, itis isomorphic to Z[1/n] X Z, and thus we can represent elements as pairs (7, ),
reZl/n|,se”Z

Proposition. Let K and H be left-orderable groups with positive cones P C K and P, C H.

Consider the short exact sequence:

1—>K—>G1>H—>1

Then Py = {g € G : (g) € Py} U Py is a positive cone of G.



There are two orderings on Z[1/n] and Z, the canonical one and its reverse ordering. We thus
get four bi-orderings:

Pt ={(r,s):s>0V(s=0Ar>0)}
P ={(r,s):s>0V(s=0Ar<0)}
P t={(r,s):s<0V(s=0Ar>0)}
P ={(r,s):s<0V(s=0Ar<0)}

These four are bi-orderings and conjugation invariant.

1



BS(1,m) acts on R via orientation preserving affine transformations, i.e. there is
p:BS(1,n) = AffT(R) with

pla)(x) =x+1 and p(b)(z) = z/n.
le, p(a”b®)(xz) =n"z +r.

Fore e R—Q
P ={g:p(g)(e) > e}
P ={g:p(9)(e) <¢}
Fore € Q
QI ={g:(p(9)(e) >¢) V(p(g)(e) =eAp(g)(e +1) >e+1)}
Qf~ ={g:(p(g)(e) > ) V(p(g)(e) =eAplg)(e+1) <e+1)}
Q=" ={g:(p(g)(e) <e) V(p(g)(e) = Aplg)(e +1) >e+1)}
Q- ={g:(p(9)(e) <)V (p(g)(e) =eNp(g)(e+1) <e+1)}



Theorem (Rivas '10, Deroin-Navas—-Rivas '16). The above sets are all the positive cones on
BS(1,n).

Note that the point € and type are sufficient to recover the positive cone.
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Theorem (Rivas '10, Deroin-Navas—-Rivas '16). The above sets are all the positive cones on
BS(1,n).

Note that the point € and type are sufficient to recover the positive cone.

BS(1,n)

Theorem (HLR). Foreveryn > 1, I} is hyperfinite.

One can show that for any of the above cones T;(g,1>(€) = (T7)9, so it is sufficient to show that
the orbit equivalence relation of BS(1,n) =~ R is hyperfinite.

letx B} y < 3dp,qVkx(p+ k) =y(q+ k) forxz,y € n®. By
Dougherty-Jackson—-Kechris '94 this is hyperfinite.



We define a Borel reduction to B}, f : R — n“ by z  {x} where {z} denotes the base n
expansion of the decimal part of z. Suppose that y = p((r, s))(x) = n~*x + r and multiply
the equation by a large power of n to get nPy = nix +t. Butthen {z}(¢ + k) = {y}(p+ k)
forall kand f(z) E} f(y).

14



We define a Borel reduction to B}, f : R — n“ by z  {x} where {z} denotes the base n
expansion of the decimal part of z. Suppose that y = p((r, s))(x) = n~*x + r and multiply
the equation by a large power of n to get nPy = nix +t. Butthen {z}(¢ + k) = {y}(p+ k)
forall kand f(z) E} f(y).

On the other hand if f(x) = {z} Ef {y} = f(y), then nPy = n? +t for some p,q € N,
teZ soy=nTPr+tnP soy=p((tnP,q—p))(x).

14



EFFECTIVE ASPECTS




EFFECTIVE ASPECTS

While orderable groups have seen some attention in the computability theoretic setting by Downey
and Kurtz '86, Solomon '01,02, and more recently by Harrison-Trainor 18, Darbinyan 20, and

Darbinyan and Steenbock '22, the interaction with dynamics seems to have not been investigated.

Below is a short showcase on how dynamical realizations can be used in this context.



- Recall thate € Ris left c.e. if the left cut {g € Qqy : ¢ < €} is ce. Similarly & has Turing
degree d if its left cut is of that degree.

- Fix a “standard” computable presentation Z[1/n]| x Z.

- Given a positive cone T of BS(l, n) call € its base point and T its type.

Proposition (HLR). Left-orderings of BS(1, n) are Turing equivalent to their base point, uniformly

in the type.
Let (G be a computable left-orderable group and Pa c.e. positive cone of G. Then

I(G) = {e : W_is a positive cone}
I<P7G):{6:We Elo P}



Proposition. Let G be an infinite computable group with a computable left-ordering. Then I(G)
is Hg—complete.

Theorem (HLR).

(1) 1(P,,BS(1,n)) is II9-complete.
(2) I(Pz,BS(1,n))is X9-complete for every computable e € R — Q.

For the proof of the proposition and (1) simply fix an index ¢ for a cone and at s if

We si1 F We o let Wy s = W, , otherwise W; . =W, ;. Then freduces Inf.

The proof for (2) is a classical movable marker construction and similar to the proof that the set of
left-ce. reals is X3 complete.

Question. What is the complexity of I(Q3,BS(1,n)) fore € Q?

Question. What is the complexity of ElBj(l’") and Elcj for other G on indices in terms of
computable reducibility?
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