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Countable Borel equivalence
relations and groups



Borel reducibility of equivalence relations

• Let 𝑋 be a Polish space (e.g., 2𝜔 , 2𝐺 , 𝜔𝜔). The set ℬ(𝑋) of Borel subsets of 𝑋 is the
smallest 𝜎-algebra containing all open subsets of 𝑋.

• An equivalence relation 𝐸 on a Polish space 𝑋 …
• is Borel if it is a Borel subset of 𝑋 × 𝑋.
• is countable (finite) if every 𝐸-class is countable (finite).
• is hyperfinite if there are finite 𝐸𝑖 ⊆ 𝐸𝑖+1 for 𝑖 ∈ 𝜔 with 𝐸 = ⋃ 𝐸𝑖 .

• A function 𝑓 ∶ 𝑋 → 𝑌 is Borel, if 𝑓−1(𝐴) is Borel for every open 𝐴 ⊆ 𝑌.
• For two Borel equivalence relations 𝐸 and 𝐹, 𝐸 is Borel reducible to 𝐹, 𝐸 ≤𝐵 𝐹 if there is
Borel 𝑓 such that 𝑥 𝐸 𝑦 if and only if 𝑓(𝑥) 𝐸 𝑓(𝑦).
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Theory of countable Borel equivalence relations

A countable equivalence relation 𝐸 is

• smooth if 𝐸 ≤𝐵 𝑖𝑑2𝜔

• hyperfinite iff 𝐸 ≡𝐵 𝐸0 : for 𝑥, 𝑦 ∈ 2𝜔 𝑥 𝐸0 𝑦 ⟺ ∃𝑚(∀𝑛 > 𝑚)𝑥(𝑛) = 𝑦(𝑛)
• universal if for every countable Borel 𝐹, 𝐹 ≤𝐵 𝐸,

For example 𝐸𝐹2𝑠 where for 𝑥, 𝑦 ∈ 2𝐹2 , 𝑥 𝐸𝐹2𝑠 𝑦 ⟺ (∃𝑔 ∈ 𝐹2)∀ℎ 𝑥(ℎ) = 𝑦(𝑔ℎ), is
universal.

Theorem (Harrington-Kechris-Louveau ’90). A Borel equivalence relation 𝐸 is either smooth or
𝐸0 ≤𝐵 𝐸.

Several examples of intermediate equivalence relations are known.

Theorem (Slaman–Steel ’88). Turing equivalence is not hyperfinite.

Question. Is Turing equivalence complete?
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Connection with groups and Weiss’s conjecture

Theorem (Feldman–Moore ’77). A countable equivalence relation 𝐸 on 𝑋 is Borel iff there is a
countable group 𝐺 such that 𝐸 is the orbit equivalence relation of a Borel action of 𝐺 on 𝑋
(𝐺 ↷ 𝑋).

A countable group 𝐺 is amenable if there is a left-invariant, finitely additive probability measure
on 2𝐺 .

Conjecture (Weiss). If 𝐸 is the orbit equivalence relation of a Borel action of a countable
amenable group, then 𝐸 is hyperfinite.

Verified only for a subclass. Most recently by Conley–Jackson–Marks–Seward–Tucker-Drob ’23.
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Left-orderable groups and their
dynamics



Left-orderability of groups

A group 𝐺 is left-orderable if there is a linear ordering ≤ on 𝐺 such that for all 𝑓, 𝑔, ℎ ∈ 𝐺
𝑔 ≤ ℎ ⟹ 𝑓𝑔 ≤ 𝑓ℎ. If in addition 𝑔 ≤ ℎ ⟹ 𝑔𝑓 ≤ ℎ𝑓, then 𝐺 is bi-orderable.

≤ partitions 𝐺 into the positive cone 𝑃 = {𝑔 ∈ 𝐺 ∶ 𝑔 ≥ 𝑖𝑑}, 𝑃 −1 = {𝑔−1 ∶ 𝑔 ∈ 𝑃 +} and
{𝑖𝑑}.

This is a characterization, i.e., for every 𝑃 such that 𝐺 = 𝑃 ∪ 𝑃 −1 ∪ {𝑖𝑑} there is an induced
left-ordering on 𝐺 via 𝑔 ≤𝑃 ℎ ⟺ 𝑔−1ℎ ∈ 𝑃.

𝐿𝑂(𝐺) = {𝑃 ⊆ 𝐺 ∶ 𝑃 a positive cone} is a closed subspace of 2𝐺 and thus Polish.

Let 𝐸𝑙𝑜
𝐺 be the orbit relation of 𝐺 ↷ 𝐿𝑂(𝐺) via conjugation, i.e., (𝑔, 𝑥) ↦ 𝑥𝑔 = 𝑔−1𝑥𝑔.

Calderoni–Clay: Study the Borel complexity of 𝐸𝑙𝑜
𝐺 for countable groups.
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Examples

Calderoni and Clay gave several examples of groups where 𝐸𝑙𝑜 is smooth, hyperfinite, or universal.

• (Calderoni–Clay ’22) 𝐸𝐹2
𝑙𝑜 is universal for 𝑛 > 2.

• If 𝐺 is torsion-free abelian, then 𝐸𝐺
𝑙𝑜 is smooth.

• (Calderoni–Clay ’23) 𝐸BS(1,𝑛)
𝑙𝑜 is not smooth for 𝑛 > 1 where

BS(1, 𝑛) = ⟨𝑎, 𝑏 ∶ 𝑏−1𝑎𝑏 = 𝑎𝑛⟩

Question (Calderoni–Clay ’23) Is 𝐸BS(1,𝑛)
𝑙𝑜 hyperfinite?

Question (Calderoni–Clay ’22) Are there groups such that 𝐸𝐺
𝑙𝑜 is intermediate?
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Dynamical realization

Theorem (Ghys ’01). Let 𝐺 be a countable group. Then tfae:

(1) 𝐺 is left-orderable.
(2) 𝐺 acts faithfully on the real line by orientation preserving homeomorphism, i.e., there is a

faithful representation 𝐷 ∶ 𝐺 → Homeo+(ℝ).

Idea for (2) ⟹ (1): Fix a dense sequence (𝑥𝑖) in ℝ and define 𝑃𝐷 as 𝑔 ∈ 𝑃𝐷 if for the least
𝑖 such that 𝐷(𝑔)(𝑥𝑖) ≠ 𝑥𝑖 , 𝐷(𝑔)(𝑥𝑖) > 𝑥𝑖 .

(1) ⟹ (2) Fix an enumeration (𝑔𝑖) of 𝐺 and define a map 𝑡 ∶ 𝐺 → ℝ that preserves ≤ by
𝑡(𝑔0) = 0 and

𝑡(𝑔𝑖) =

⎧{{
⎨{{⎩

max{𝑡(𝑔0), … 𝑡(𝑔𝑖−1)} + 1 if (∀𝑗 < 𝑖)𝑔𝑗 ≺ 𝑔𝑖

min{𝑡(𝑔0), … 𝑡(𝑔𝑖−1)} − 1 if (∀𝑗 < 𝑖)𝑔𝑖 ≺ 𝑔𝑗
𝑡(𝑔𝑚)+𝑡(𝑔𝑛)

2 if 𝑔𝑖 ∈ (𝑔𝑚, 𝑔𝑛), 𝑚, 𝑛 < 𝑖 and (∀𝑗 < 𝑖)𝑔𝑗 ∉ (𝑔𝑚, 𝑔𝑛)
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Let 𝐺 ↷ 𝑡(𝐺) via 𝑔(𝑡(𝑔𝑖)) = 𝑡(𝑔𝑔𝑖). This action can be extended to obtain a faithful
representation 𝐷 ∶ 𝐺 ↦ Homeo+(ℝ).

Note that this effectivizes:

1. There is a Turing operator Φ such that Φ(𝐺, 𝑃 , 𝑔) = 𝐷(𝑔).
2. Similarly if we are given 𝐷, 𝐺 and (𝑥𝑖) we can compute a positive cone 𝑃.
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Borel complexity of 𝐸BS(1,𝑛)
𝑙𝑜



Rivas’ analysis of left-orderings

BS(1, 𝑛) = {𝑎, 𝑏 ∶ 𝑏−1𝑎𝑏 = 𝑎𝑛}

BS(1, 𝑛) splits over
1 → ℤ[1/𝑛] → BS(1, 𝑛) → ℤ → 1

i.e., it is isomorphic to ℤ[1/𝑛] ⋊ ℤ, and thus we can represent elements as pairs (𝑟, 𝑠),
𝑟 ∈ ℤ[1/𝑛], 𝑠 ∈ ℤ

Proposition. Let 𝐾 and 𝐻 be left-orderable groups with positive cones 𝑃𝐾 ⊂ 𝐾 and 𝑃ℎ ⊂ 𝐻.
Consider the short exact sequence:

1 → 𝐾 → 𝐺
𝜋
−→ 𝐻 → 1

Then 𝑃𝐺 = {𝑔 ∈ 𝐺 ∶ 𝜋(𝑔) ∈ 𝑃𝐻} ∪ 𝑃𝐾 is a positive cone of 𝐺.
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There are two orderings on ℤ[1/𝑛] and ℤ, the canonical one and its reverse ordering. We thus
get four bi-orderings:

𝑃 ++
∞ = {(𝑟, 𝑠) ∶ 𝑠 > 0 ∨ (𝑠 = 0 ∧ 𝑟 > 0)}

𝑃 +−
∞ = {(𝑟, 𝑠) ∶ 𝑠 > 0 ∨ (𝑠 = 0 ∧ 𝑟 < 0)}

𝑃 −+
∞ = {(𝑟, 𝑠) ∶ 𝑠 < 0 ∨ (𝑠 = 0 ∧ 𝑟 > 0)}

𝑃 −−
∞ = {(𝑟, 𝑠) ∶ 𝑠 < 0 ∨ (𝑠 = 0 ∧ 𝑟 < 0)}

These four are bi-orderings and conjugation invariant.
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BS(1, 𝑛) acts on ℝ via orientation preserving affine transformations, i.e. there is
𝜌 ∶ BS(1, 𝑛) → 𝐴𝑓𝑓+(ℝ) with

𝜌(𝑎)(𝑥) = 𝑥 + 1 and 𝜌(𝑏)(𝑥) = 𝑥/𝑛.

I.e., 𝜌(𝑎𝑟𝑏𝑠)(𝑥) = 𝑛−𝑠𝑥 + 𝑟.

For 𝜀 ∈ ℝ − ℚ

𝑃 +
𝜀 = {𝑔 ∶ 𝜌(𝑔)(𝜀) > 𝜀}

𝑃 −
𝜀 = {𝑔 ∶ 𝜌(𝑔)(𝜀) < 𝜀}

For 𝜀 ∈ ℚ

𝑄++
𝜀 = {𝑔 ∶ (𝜌(𝑔)(𝜀) > 𝜀) ∨ (𝜌(𝑔)(𝜀) = 𝜀 ∧ 𝜌(𝑔)(𝜀 + 1) > 𝜀 + 1)}

𝑄+−
𝜀 = {𝑔 ∶ (𝜌(𝑔)(𝜀) > 𝜀) ∨ (𝜌(𝑔)(𝜀) = 𝜀 ∧ 𝜌(𝑔)(𝜀 + 1) < 𝜀 + 1)}

𝑄−+
𝜀 = {𝑔 ∶ (𝜌(𝑔)(𝜀) < 𝜀) ∨ (𝜌(𝑔)(𝜀) = 𝜀 ∧ 𝜌(𝑔)(𝜀 + 1) > 𝜀 + 1)}

𝑄−−
𝜀 = {𝑔 ∶ (𝜌(𝑔)(𝜀) < 𝜀) ∨ (𝜌(𝑔)(𝜀) = 𝜀 ∧ 𝜌(𝑔)(𝜀 + 1) < 𝜀 + 1)}
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Theorem (Rivas ’10, Deroin–Navas–Rivas ’16). The above sets are all the positive cones on
BS(1, 𝑛).

Note that the point 𝜀 and type are sufficient to recover the positive cone.

Theorem (HLR). For every 𝑛 ≥ 1, 𝐸BS(1,𝑛)
𝑙𝑜 is hyperfinite.

One can show that for any of the above cones 𝑇 ∘
𝜌(𝑔−1)(𝜀) = (𝑇 ∘

𝜀)𝑔 , so it is sufficient to show that
the orbit equivalence relation of BS(1, 𝑛) ↷ ℝ is hyperfinite.

Let 𝑥 𝐸𝑛
𝑡 𝑦 ⟺ ∃𝑝, 𝑞∀𝑘 𝑥(𝑝 + 𝑘) = 𝑦(𝑞 + 𝑘) for 𝑥, 𝑦 ∈ 𝑛𝜔 . By

Dougherty–Jackson–Kechris ’94 this is hyperfinite.
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We define a Borel reduction to 𝐸𝑛
𝑡 , 𝑓 ∶ ℝ → 𝑛𝜔 by 𝑥 ↦ {𝑥} where {𝑥} denotes the base n

expansion of the decimal part of 𝑥. Suppose that 𝑦 = 𝜌((𝑟, 𝑠))(𝑥) = 𝑛−𝑠𝑥 + 𝑟 and multiply
the equation by a large power of 𝑛 to get 𝑛𝑝𝑦 = 𝑛𝑞𝑥 + 𝑡. But then {𝑥}(𝑞 + 𝑘) = {𝑦}(𝑝 + 𝑘)
for all 𝑘 and 𝑓(𝑥) 𝐸𝑛

𝑡 𝑓(𝑦).

On the other hand if 𝑓(𝑥) = {𝑥} 𝐸𝑛
𝑡 {𝑦} = 𝑓(𝑦), then 𝑛𝑝𝑦 = 𝑛𝑞 + 𝑡 for some 𝑝, 𝑞 ∈ ℕ,

𝑡 ∈ ℤ. So 𝑦 = 𝑛𝑞−𝑝𝑥 + 𝑡𝑛−𝑝 , so 𝑦 = 𝜌((𝑡𝑛−𝑝, 𝑞 − 𝑝))(𝑥).
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𝑡 {𝑦} = 𝑓(𝑦), then 𝑛𝑝𝑦 = 𝑛𝑞 + 𝑡 for some 𝑝, 𝑞 ∈ ℕ,

𝑡 ∈ ℤ. So 𝑦 = 𝑛𝑞−𝑝𝑥 + 𝑡𝑛−𝑝 , so 𝑦 = 𝜌((𝑡𝑛−𝑝, 𝑞 − 𝑝))(𝑥).
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Effective aspects

While orderable groups have seen some attention in the computability theoretic setting by Downey
and Kurtz ’86, Solomon ’01,’02, and more recently by Harrison-Trainor ’18, Darbinyan ’20, and
Darbinyan and Steenbock ’22, the interaction with dynamics seems to have not been investigated.

Below is a short showcase on how dynamical realizations can be used in this context.
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• Recall that 𝜀 ∈ ℝ is left c.e. if the left cut {𝑞 ∈ ℚ2 ∶ 𝑞 < 𝜀} is c.e. Similarly 𝜀 has Turing
degree d if its left cut is of that degree.

• Fix a “standard” computable presentation ℤ[1/𝑛] ⋊ ℤ.
• Given a positive cone 𝑇 ∘

𝜀 of BS(1, 𝑛) call 𝜀 its base point and 𝑇 ∘ its type.

Proposition (HLR). Left-orderings of BS(1, 𝑛) are Turing equivalent to their base point, uniformly
in the type.

Let 𝐺 be a computable left-orderable group and 𝑃 a c.e. positive cone of 𝐺. Then

𝐼(𝐺) = {𝑒 ∶ 𝑊𝑒 is a positive cone}
𝐼(𝑃 , 𝐺) = {𝑒 ∶ 𝑊𝑒 𝐸𝑙𝑜 𝑃}
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Proposition. Let 𝐺 be an infinite computable group with a computable left-ordering. Then 𝐼(𝐺)
is Π0

2-complete.

Theorem (HLR).

(1) 𝐼(𝑃 ∘
∞, BS(1, 𝑛)) is Π0

2-complete.
(2) 𝐼(𝑃 ∘

𝜀 , BS(1, 𝑛)) is Σ0
3-complete for every computable 𝜀 ∈ ℝ − ℚ.

For the proof of the proposition and (1) simply fix an index 𝑖 for a cone and at 𝑠 if
𝑊𝑒,𝑠+1 ≠ 𝑊𝑒,𝑠 let 𝑊𝑓(𝑒),𝑠 = 𝑊𝑖,𝑠 , otherwise 𝑊𝑖,𝑠 = 𝑊𝑖,𝑠−1 . Then 𝑓 reduces 𝐼𝑛𝑓.

The proof for (2) is a classical movable marker construction and similar to the proof that the set of
left-c.e. reals is Σ0

3 complete.

Question. What is the complexity of 𝐼(𝑄∘
𝜀, BS(1, 𝑛)) for 𝜀 ∈ ℚ?

Question. What is the complexity of 𝐸BS(1,𝑛)
𝑙𝑜 and 𝐸𝐺

𝑙𝑜 for other 𝐺 on indices in terms of
computable reducibility?
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