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INTRODUCTION

Computable structure theory studies the relationship between computational and structural

properties of countable structures.
Two of my favorite topics in this area are:

1. Classification problems: How complicated to decide whether two structure are equivalent?

2. Degree spectra: What are the Turing degrees of structures equivalent to a given structure?

The main goal of this research is to explore the connections between classifications problems and

degree spectra of structures.



DEGREE SPECTRA AND CLASSIFICATION
PROBLEMS



CLASSIFICATION PROBLEMS FOR COUNTABLE STRUCTURES

Let A be a countable structure in vocabulary L and E be an equivalence relation on structures
in L.

Question 1. How complicated is Mp(A) ={B: BE A}?
Question 2. How complicated is I5(A) ={e: ¢, = D(B)NBE A}?
D(B) € 2% denotes the atomic diagram of B in the vocabulary L = (R, );cr.

D(B)("R;(b)") = 1if RP(b) and D(B)("R;(b)") = 0 otherwise.

Question 3. How complicated is the relation £ on a specific class of structures?



FORMAL SETTING

To answer questions like Question 1 and 3 we consider the following setting:

Let L be a relational vocabulary with symbols (R;/a;);c,, then
Mod(L) =[] 2"
€W

is a Polish space and we can develop the Borel hierarchy (Eg,l’[g, Ag), projective hierarchy
(BL,IIL, ALY in the usual way.



REDUCIBILITY

Definition
Let F' be a binary relation on a Polish space X and F'be a binary relation on a Polish space Y,

then E'is reducible to F'if there is a function f : X — Y'such that forall z{, 2, € X

r) Exy & f(x1) F f(25).

E'is Borel reducibleto F, E <y F if fis Borel.

If X = Mod(Ly)and Y = Mod(L,), then E is computably reducible to F, E <_ F, if there
is a Turing operator ® such that ®PS) = D(f(8)) for § € Mod(L,).

Definition
FEis a ['-complete relation if E € I" and every relation in I" is Borel reducible to E.



EXAMPLES

A and B are bi-embeddable, A ~ B, if either is isomorphic to a substructure of the other.
A and B are elementary bi-embeddable, A & B, if either is isomorphic to a elementary
substructure of the other.

Theorem (Louveau, Rosendal '05)
Bi-embeddability on graphs, ~4, is a 2% complete equivalence relation.
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EXAMPLES

A and B are bi-embeddable, A ~ B, if either is isomorphic to a substructure of the other.

A and B are elementary bi-embeddable, A & B, if either is isomorphic to a elementary
substructure of the other.

Theorem (Louveau, Rosendal '05)
Bi-embeddability on graphs, ~4, is a 2% complete equivalence relation.

Theorem (Friedman, Stanley '89; Hjorth '00)

Isomorphism on graphs =2 is
1. complete among isomorphism on classes of structures,
2. not Borel,
3. not X} complete.

Theorem (R. '21)
Elementary bi-embeddability on graphs 2 is a 2% complete equivalence relation.



DEGREE SPECTRA

The isomorphism spectrum of a structure, the set of Turing degrees of its isomorphic copies, is
one of the classic notions studied in computable structure theory. (Knight '86)

Fokina, Semukhin, and Turetsky; Montalban; and Yu independently suggested to study degree
spectra with respect to equivalence relations.

Definition
Given an equivalence relation E on Mod(L) and A € Mod(L), the degree spectrum of A
w.rt Eis

DgSpp(A)={X€2¥:3B(BEA& D(B) =1 X)}



EXAMPLES

A structure A is automorphically trivial if there is a finite tuple @ € A such that every

permutation of A that fixes @ is an automorphism.

Theorem (Knight '86; Andrews, Miller '15; Fokina, R., San Mauro '19; R. '18)
If A is not automorphically trivial, then DgSpE(/l) is closed upwards, otherwise it is a single

Turing degree for all £ € {% (Knight), ~ (FRS), = (R.), = (AM)}.



EXAMPLES

A structure A is automorphically trivial if there is a finite tuple @ € A such that every

permutation of A that fixes @ is an automorphism.

Theorem (Knight '86; Andrews, Miller '15; Fokina, R., San Mauro '19; R. '18)
If A is not automorphically trivial, then DgSpE(/l) is closed upwards, otherwise it is a single

Turing degree for all £ € {% (Knight), ~ (FRS), = (R.), = (AM)}.

{X: X > S}forall S € 2¢¥ v (Richter '81) v | V|V
{X: X >0} /(Slaman: Wehner98) | v | / | /
{X: X" > 0™ foralln € w v/ (GHKMMS "05) |/ |V
{(X: X > 0@} foralla € 0,0 > w /(GHKMMS "05) v X
{X:X ¢ A} /(GMS '13) VAR
{X >7 8} U{X >7 S5} for Sy |7 S5 X(Knight et al.) V)| x|V
. . .




RELATING CLASSIFICATION AND DEGREE SPECTRA

Observation: The complexity of the equivalence relation restricts the complexity of its degree
spectra.

Proposition (folklore)
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RELATING CLASSIFICATION AND DEGREE SPECTRA

Observation: The complexity of the equivalence relation restricts the complexity of its degree
spectra.

Proposition (folklore)
If EisIIY, then for every A € Mod(L), DgSpg(A) isZ0 ., ;.

(a3

(X : X > 0@} foralla € O, > w | /(GHKMMS)
{X: X ¢ A} /(GMS)

NN
NN R
x| X

Another example arises from Scott’s isomorphism theorem:

Proposition (folklore)
Every isomorphism spectrum is Borel.



TWO CONES

=
{X >7 S} U{X >0 8} for Sy |1 S, | Kknightetal) | (V) | x | (V)

Theorem (Harrison-Trainor 22 (wip))
There are sets Sy |1 Sy such that {X >5 .51} U{X >, S5} is the bi-embeddability spectrum

of a structure.

Q
2
|

Theorem (Melnikov, Montalban "18)
Let (X, G, a) be an effective transformation group and E the orbit equivalence relation. Then

forevery x € X, DgSpg_(z) # {X 27 51} U{X 27 Sy} forany S |1 Ss.



TWO CONES

o=
{X >7 S} U{X >0 8} for Sy |1 S, | Kknightetal) | (V) | x | (V)

Theorem (Harrison-Trainor 22 (wip))
There are sets Sy |1 Sy such that {X >5 .51} U{X >, S5} is the bi-embeddability spectrum

of a structure.

Q
2
|

Theorem (Melnikov, Montalban "18)
Let (X, G, a) be an effective transformation group and E the orbit equivalence relation. Then

forevery x € X, DgSpg_(z) # {X 27 51} U{X 27 Sy} forany S |1 Ss.

- Elementary bi-embeddability allows coding: If A < B, then foralla € A<
3 tp,4(@) = 3 tps (@)
- Most examples of isomorphism spectra carry over.



REDUCING BI-EMBEDDABILITY TO
ELEMENTARY BI-EMBEDDABILITY




THE COMPLEXITY OF &

Theorem (R.)
The elementary bi-embeddability relation on graphs is 2%—complete.

We prove this theorem by giving a reduction from < to <. It then follows from the
completeness of < (Louveau, Rosendal) that < is E% complete. That & is E% complete is

an immediate corollary.
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THE COMPLEXITY OF &

Theorem (R.)
The elementary bi-embeddability relation on graphs is 2%—complete.

We prove this theorem by giving a reduction from < to <. It then follows from the
completeness of < (Louveau, Rosendal) that < is E% complete. That & is E% complete is

an immediate corollary.

We do a Marker extension (pairs of structures technique) using structures with a special model

theoretic property to obtain a result about degree spectra.

Theorem (R.) ~
Let G be a graph, then there exists a graph G such that

~

DgSp.(9) ={X : X’ € DgSp.(9)}
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PROOF SKETCH

Given G we first produce a structure f(G) by replacing edges with copies of a L—structure €
and non-edges with copies of 2.

G:a ——b f<9>:af@ of

Formally: f(G)isan LU {V/1,0/3} structure where we have a bijection f : G — Vand the L-reduct
of O(f(a), f(b),—) is isomorphic to € if aFb and D if ~aEb, no L-symbol holds on elements of V'
and the sets V, and O(a, b, —) for a, b € Vare pairwise disjoint.
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f(h) is elementary we show that player Il has a winning strategy in the Ehrenfeucht-Fraissé

games G, ((f(91),a), (f(G2), f(h)(a)) foralln, and a € f(G1)™.



PROOF SKETCH

Given G we first produce a structure f(G) by replacing edges with copies of a L—structure €

and non-edges with copies of 2.

G:a ——b f<9>=af@ of

Formally: f(G)isan LU {V/1,0/3} structure where we have a bijection f : G — Vand the L-reduct
of O(f(a), f(b),—) is isomorphic to € if aFb and D if ~aEb, no L-symbol holds on elements of V'
and the sets V, and O(a, b, —) for a, b € Vare pairwise disjoint.

If h: G < G, then there is an induced embedding f(h) : f(G;) < f(G5). To show that
f(h) is elementary we show that player Il has a winning strategy in the Ehrenfeucht-Fraissé

games G,,((f(91), @), (f(G2), f(R)(a)) foralln,and @ € f(G;)=*.
That G, < G, iff f(G1) < f(Gs) itis sufficient that CKD, DLC and C £ D.

We can transform the structures f(G) into a graph using standard codings.



For DgSp~(f(9)) ={X : X’ € DgSp.(G)} itis sufficient that

1. forall A ~ G A >4 f(A),
2. forall B = f(G) thereis A
21 with f(A) = B,

22 and B >, A= A
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21is essential and non-trivial, e.g. take € = (w,w + (), D = (w + {,w). Then we would get
that f(G)" > G = G but the structure obtained if we use € = (w,w) = 2D would elementary

embed into f(9).



For DgSp~(f(9)) ={X : X’ € DgSp.(G)} itis sufficient that

1. forall A ~ G A >4 f(A),
2. forall B = f(G) thereis A
21 with f(A) = B,

22 and B >, A= A

21is essential and non-trivial, e.g. take € = (w,w + (), D = (w + {,w). Then we would get
that f(G)" > G = G but the structure obtained if we use € = (w,w) = 2D would elementary
embed into f(G). Want that f([F].) = [F]~. We need €, D with

1. C=2D,
2. forevery A % C, AXC,
2". forevery A % D, ALD.



MINIMAL MODELS

Definition
1. Astructure A is minimal, if there is no B such that B <X A.
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MINIMAL MODELS

Definition
1. Astructure A is minimal, if there is no B such that B <X A.

Question (Vaught): Does every countable complete theory with a minimal model have a prime
model?

Theorem (Fuhrken '66)
There is a countable complete theory with 280 minimal models.

Theorem (Shelah '78)
For every k < N, there is a countable complete theory with k minimal models.

Theorem (Hjorth '96)
In L there is a countable complete theory with X; many minimal models but no perfect set of

minimal models.
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SHELAH’S THEORY

For v € 2<% define F, : 2% — 2% g = U +, 0 (where vis interpreted as 0 and -+ is
base 2 addition).

let R, = {0 € 2% : v < o} and consider the theory T of
14
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SHELAH’S THEORY

For v € 2<% define F, : 2% — 2% g = U +, 0 (where vis interpreted as 0 and -+ is
base 2 addition).

Let R, = {o € 2* : v < ¢} and consider the theory T of
A= (2&1’ <FI/>IJE2<""7 <Ru>1/62<“’>‘

Shelah used T'and variations of T'to prove his theorem. It is easy to see that

. T'has quantifier elimination,

the substructure (o) generated by o € 2¢ is an elementary substructure of A,
(o) is minimal,

if 3°°¢ (i) # 7(3), then there is a 3§ sentence distuingishing (o) and (7).

dx /\ R, (x)

v=o

I ST



Lemma
Let X be AS(Y') for a set Y, then there exists a sequence of structures (C;);c,,, uniformly

computable in'Y, such that
C; = {

We do a Marker extension with (0) and (1) to obtain that for every graph G, there is a graph G
such that

(0) ifieX,
(1) ifi¢ X.

DgSp.(9) = {X : X’ € DgSp.(9)}.



~Z-SPECTRA DON'T JUMP

(Harrison-Trainor '22) There are sets Sy | Sy such that {X >4 S;} U{X >, 55} is the
bi-embeddability spectrum of a structure.

= 3G with DgSp.(G) ={Y : Y € {X > S} U{X >, 5,}}



~Z-SPECTRA DON'T JUMP

(Harrison-Trainor '22) There are sets Sy | Sy such that {X >4 S;} U{X >, 55} is the
bi-embeddability spectrum of a structure.

= 3G with DgSp.(G) ={Y : Y € {X > S} U{X >, 5,}}

(R."18) No elementary bi-embeddability spectrum can be the union of cones above incomparable
degrees.

But DgSp.(G) = {X >, S, } U{X >, 5,}.

Corollary
There is an elementary bi-embeddability spectrum X such that X' = {X’ : X € X} is not the

elementary bi-embeddability spectrum of a structure.

Isomorphism spectra do jump and its an open question whether &~ or = spectra jump.



A FINAL NOTE ON COMPLEXITIES

The reduction ~5—2 is functorial and has a pseudo-inverse:

There is a computable functor ' : (G, <) — (G, <) and a functor

H: (F(G),x) — (G,<) such that the F' o G and G o F are naturally isomorphic to the
identity functors.

H is not computable: Given F'(G) it takes one jump to decide whether a structure coding the
edge relation between @ and by is isomorphic to (0) or (1).



A FINAL NOTE ON COMPLEXITIES

The reduction ~5—2 is functorial and has a pseudo-inverse:

There is a computable functor ' : (G, <) — (G, <) and a functor

H: (F(G),x) — (G,<) such that the F' o G and G o F are naturally isomorphic to the
identity functors.

H is not computable: Given F'(G) it takes one jump to decide whether a structure coding the
edge relation between @ and by is isomorphic to (0) or (1).

Write A <,, B if there is an embedding f : A — B such that n-tp*(a) = n-tp/ D (f(a))
foralla € A¥ and &,, for the induced equivalence relation.

Corollary
The &2, relation on graphs is a 2%—complete equivalence relation for all n.

Corollary
There is no computable functor F' : (G, <) — (G, =<X) with computable (continuous)

pseudo-inverse. E
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Thank you!
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