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Introduction

Computable structure theory studies the relationship between computational and structural
properties of countable structures.

Two of my favorite topics in this area are:

1. Classification problems: How complicated to decide whether two structure are equivalent?
2. Degree spectra: What are the Turing degrees of structures equivalent to a given structure?

The main goal of this research is to explore the connections between classifications problems and
degree spectra of structures.
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Degree spectra and classification
problems



Classification problems for countable structures

Let 𝒜 be a countable structure in vocabulary 𝐿 and 𝐸 be an equivalence relation on structures
in 𝐿.

Question 1. How complicated is 𝑀𝐸(𝒜) = {ℬ ∶ ℬ 𝐸 𝒜}?

Question 2. How complicated is 𝐼𝐸(𝒜) = {𝑒 ∶ 𝜙𝑒 = 𝐷(ℬ) ∧ ℬ 𝐸 𝒜}?

𝐷(ℬ) ∈ 2𝜔 denotes the atomic diagram of ℬ in the vocabulary 𝐿 = (𝑅𝑖)𝑖∈𝐼 ,

𝐷(ℬ)(⌜𝑅𝑖(𝑏̄)⌝) = 1 if 𝑅ℬ
𝑖 (𝑏̄) and 𝐷(ℬ)(⌜𝑅𝑖(𝑏̄)⌝) = 0 otherwise.

Question 3. How complicated is the relation 𝐸 on a specific class of structures?
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Formal setting

To answer questions like Question 1 and 3 we consider the following setting:

Let 𝐿 be a relational vocabulary with symbols (𝑅𝑖/𝑎𝑖)𝑖∈𝜔 , then

𝑀𝑜𝑑(𝐿) = ∏
𝑖∈𝜔

2𝜔𝑎𝑖

is a Polish space and we can develop the Borel hierarchy (ΣΣΣ0
𝛼,ΠΠΠ0

𝛼,ΔΔΔ0
𝛼), projective hierarchy

(ΣΣΣ1
𝛼,ΠΠΠ1

𝛼,ΔΔΔ1
𝛼) in the usual way.

4



Reducibility

Definition
Let 𝐸 be a binary relation on a Polish space 𝑋 and 𝐹 be a binary relation on a Polish space 𝑌,
then 𝐸 is reducible to 𝐹 if there is a function 𝑓 ∶ 𝑋 → 𝑌 such that for all 𝑥1, 𝑥2 ∈ 𝑋

𝑥1 𝐸 𝑥2 ⇔ 𝑓(𝑥1) 𝐹 𝑓(𝑥2).

𝐸 is Borel reducible to 𝐹, 𝐸 ≤𝐵 𝐹, if 𝑓 is Borel.

If 𝑋 = 𝑀𝑜𝑑(𝐿1) and 𝑌 = 𝑀𝑜𝑑(𝐿2), then 𝐸 is computably reducible to 𝐹, 𝐸 ≤𝑐 𝐹, if there
is a Turing operator Φ such that Φ𝐷(𝒮) = 𝐷(𝑓(𝒮)) for 𝒮 ∈ 𝑀𝑜𝑑(𝐿1).

Definition
𝐸 is a Γ-complete relation if 𝐸 ∈ Γ and every relation in Γ is Borel reducible to 𝐸.

5



Examples

𝒜 and ℬ are bi-embeddable, 𝒜 ≈ ℬ, if either is isomorphic to a substructure of the other.

𝒜 and ℬ are elementary bi-embeddable, 𝒜 ≊ ℬ, if either is isomorphic to a elementary
substructure of the other.

Theorem (Louveau, Rosendal ’05)
Bi-embeddability on graphs, ≈𝐺 , is aΣΣΣ1

1 complete equivalence relation.

Theorem (Friedman, Stanley ’89; Hjorth ’00)
Isomorphism on graphs ≅𝐺 is

1. complete among isomorphism on classes of structures,
2. not Borel,
3. notΣΣΣ1

1 complete.

Theorem (R. ’21)
Elementary bi-embeddability on graphs ≊𝐺 is aΣΣΣ1

1 complete equivalence relation.
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Degree spectra

The isomorphism spectrum of a structure, the set of Turing degrees of its isomorphic copies, is
one of the classic notions studied in computable structure theory. (Knight ’86)

Fokina, Semukhin, and Turetsky; Montalbán; and Yu independently suggested to study degree
spectra with respect to equivalence relations.

Definition
Given an equivalence relation 𝐸 on 𝑀𝑜𝑑(𝐿) and 𝒜 ∈ 𝑀𝑜𝑑(𝐿), the degree spectrum of 𝒜
w.r.t 𝐸 is

𝐷𝑔𝑆𝑝𝐸(𝒜) = {𝑋 ∈ 2𝜔 ∶ ∃ℬ(ℬ 𝐸 𝒜 & 𝐷(ℬ) ≡𝑇 𝑋)}
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Examples

A structure 𝒜 is automorphically trivial if there is a finite tuple 𝑎 ∈ 𝐴 such that every
permutation of 𝐴 that fixes 𝑎 is an automorphism.

Theorem (Knight ’86; Andrews, Miller ’15; Fokina, R., San Mauro ’19; R. ’18)
If 𝒜 is not automorphically trivial, then 𝐷𝑔𝑆𝑝𝐸(𝒜) is closed upwards, otherwise it is a single
Turing degree for all 𝐸 ∈ {≅ (Knight), ≈ (FRS), ≊ (R.), ≡ (AM)}.

≅ ≈ ≊ ≡
{𝑋 ∶ 𝑋 ≥𝑇 𝑆} for all 𝑆 ∈ 2𝜔 3(Richter ’81) 3 3 3

{𝑋 ∶ 𝑋 >𝑇 ∅} 3(Slaman; Wehner ’98) 3 3 3

{𝑋 ∶ 𝑋(𝑛) >𝑇 ∅(𝑛)} for all 𝑛 ∈ 𝜔 3(GHKMMS ’05) 3 3 3

{𝑋 ∶ 𝑋(𝛼) >𝑇 ∅(𝛼)} for all 𝛼 ∈ 𝒪, 𝛼 ≥ 𝜔 3(GHKMMS ’05) 3 3 7

{𝑋 ∶ 𝑋 ∉ Δ1
1} 3(GMS ’13) 3 3 7

{𝑋 ≥𝑇 𝑆1} ∪ {𝑋 ≥𝑇 𝑆2} for 𝑆1 ∣𝑇 𝑆2 7(Knight et al.) (3) 7 3

⋮ ⋮ ⋮ ⋮ ⋮

8



Examples

A structure 𝒜 is automorphically trivial if there is a finite tuple 𝑎 ∈ 𝐴 such that every
permutation of 𝐴 that fixes 𝑎 is an automorphism.

Theorem (Knight ’86; Andrews, Miller ’15; Fokina, R., San Mauro ’19; R. ’18)
If 𝒜 is not automorphically trivial, then 𝐷𝑔𝑆𝑝𝐸(𝒜) is closed upwards, otherwise it is a single
Turing degree for all 𝐸 ∈ {≅ (Knight), ≈ (FRS), ≊ (R.), ≡ (AM)}.

≅ ≈ ≊ ≡
{𝑋 ∶ 𝑋 ≥𝑇 𝑆} for all 𝑆 ∈ 2𝜔 3(Richter ’81) 3 3 3

{𝑋 ∶ 𝑋 >𝑇 ∅} 3(Slaman; Wehner ’98) 3 3 3

{𝑋 ∶ 𝑋(𝑛) >𝑇 ∅(𝑛)} for all 𝑛 ∈ 𝜔 3(GHKMMS ’05) 3 3 3

{𝑋 ∶ 𝑋(𝛼) >𝑇 ∅(𝛼)} for all 𝛼 ∈ 𝒪, 𝛼 ≥ 𝜔 3(GHKMMS ’05) 3 3 7

{𝑋 ∶ 𝑋 ∉ Δ1
1} 3(GMS ’13) 3 3 7

{𝑋 ≥𝑇 𝑆1} ∪ {𝑋 ≥𝑇 𝑆2} for 𝑆1 ∣𝑇 𝑆2 7(Knight et al.) (3) 7 3

⋮ ⋮ ⋮ ⋮ ⋮ 8



Relating classification and degree spectra

Observation: The complexity of the equivalence relation restricts the complexity of its degree
spectra.

Proposition (folklore)

If 𝐸 isΠΠΠ0
𝛼 , then for every 𝒜 ∈ 𝑀𝑜𝑑(𝐿), 𝐷𝑔𝑆𝑝𝐸(𝒜) isΣΣΣ0

𝛼+1 .

≅ ≈ ≊ ≡
{𝑋 ∶ 𝑋(𝛼) >𝑇 ∅(𝛼)} for all 𝛼 ∈ 𝒪, 𝛼 ≥ 𝜔 3(GHKMMS) 3 3 7

{𝑋 ∶ 𝑋 ∉ Δ1
1} 3(GMS) 3 3 7

Another example arises from Scott’s isomorphism theorem:

Proposition (folklore)
Every isomorphism spectrum is Borel.
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Two cones

≅ ≈ ≊ ≡
{𝑋 ≥𝑇 𝑆1} ∪ {𝑋 ≥𝑇 𝑆2} for 𝑆1 ∣𝑇 𝑆2 7(Knight et al.) (3) 7 (3)

Theorem (Harrison-Trainor ’22 (wip))
There are sets 𝑆1 ∣𝑇 𝑆2 such that {𝑋 ≥𝑇 𝑆1} ∪ {𝑋 ≥𝑇 𝑆2} is the bi-embeddability spectrum
of a structure.

Theorem (Melnikov, Montalbán ’18)
Let (𝑋, 𝐺, 𝑎) be an effective transformation group and 𝐸𝐺 the orbit equivalence relation. Then
for every 𝑥 ∈ 𝑋, 𝐷𝑔𝑆𝑝𝐸𝐺

(𝑥) ≠ {𝑋 ≥𝑇 𝑆1} ∪ {𝑋 ≥𝑇 𝑆2} for any 𝑆1 ∣𝑇 𝑆2 .

• Elementary bi-embeddability allows coding: If 𝒜 ≼ ℬ, then for all ̄𝑎 ∈ 𝐴<𝜔

∃ − 𝑡𝑝𝒜( ̄𝑎) = ∃ − 𝑡𝑝ℬ( ̄𝑎).
• Most examples of isomorphism spectra carry over.

10



Two cones

≅ ≈ ≊ ≡
{𝑋 ≥𝑇 𝑆1} ∪ {𝑋 ≥𝑇 𝑆2} for 𝑆1 ∣𝑇 𝑆2 7(Knight et al.) (3) 7 (3)

Theorem (Harrison-Trainor ’22 (wip))
There are sets 𝑆1 ∣𝑇 𝑆2 such that {𝑋 ≥𝑇 𝑆1} ∪ {𝑋 ≥𝑇 𝑆2} is the bi-embeddability spectrum
of a structure.

Theorem (Melnikov, Montalbán ’18)
Let (𝑋, 𝐺, 𝑎) be an effective transformation group and 𝐸𝐺 the orbit equivalence relation. Then
for every 𝑥 ∈ 𝑋, 𝐷𝑔𝑆𝑝𝐸𝐺

(𝑥) ≠ {𝑋 ≥𝑇 𝑆1} ∪ {𝑋 ≥𝑇 𝑆2} for any 𝑆1 ∣𝑇 𝑆2 .

• Elementary bi-embeddability allows coding: If 𝒜 ≼ ℬ, then for all ̄𝑎 ∈ 𝐴<𝜔

∃ − 𝑡𝑝𝒜( ̄𝑎) = ∃ − 𝑡𝑝ℬ( ̄𝑎).
• Most examples of isomorphism spectra carry over.

10



Reducing bi-embeddability to
elementary bi-embeddability



The complexity of ≊

Theorem (R.)
The elementary bi-embeddability relation on graphs isΣΣΣ1

1-complete.

We prove this theorem by giving a reduction from ↪𝐺 to ≼𝐺 . It then follows from the
completeness of ↪𝐺 (Louveau, Rosendal) that ≼𝐺 isΣΣΣ1

1 complete. That ≊𝐺 isΣΣΣ1
1 complete is

an immediate corollary.

We do a Marker extension (pairs of structures technique) using structures with a special model
theoretic property to obtain a result about degree spectra.

Theorem (R.)
Let 𝒢 be a graph, then there exists a graph ̂𝒢 such that

𝐷𝑔𝑆𝑝≊( ̂𝒢) = {𝑋 ∶ 𝑋′ ∈ 𝐷𝑔𝑆𝑝≈(𝒢)}.

11



The complexity of ≊

Theorem (R.)
The elementary bi-embeddability relation on graphs isΣΣΣ1

1-complete.

We prove this theorem by giving a reduction from ↪𝐺 to ≼𝐺 . It then follows from the
completeness of ↪𝐺 (Louveau, Rosendal) that ≼𝐺 isΣΣΣ1

1 complete. That ≊𝐺 isΣΣΣ1
1 complete is

an immediate corollary.

We do a Marker extension (pairs of structures technique) using structures with a special model
theoretic property to obtain a result about degree spectra.

Theorem (R.)
Let 𝒢 be a graph, then there exists a graph ̂𝒢 such that

𝐷𝑔𝑆𝑝≊( ̂𝒢) = {𝑋 ∶ 𝑋′ ∈ 𝐷𝑔𝑆𝑝≈(𝒢)}.

11



Proof sketch

Given 𝒢 we first produce a structure 𝑓(𝒢) by replacing edges with copies of a 𝐿−structure 𝒞
and non-edges with copies of 𝒟.

𝒢 ∶ 𝑎 𝑏 𝑓(𝒢) ∶ 𝑎𝑓 𝑏𝑓
𝒟
𝒞

Formally: 𝑓(𝒢) is an 𝐿 ∪ {𝑉 /1, 𝑂/3} structure where we have a bijection 𝑓 ∶ 𝐺 → 𝑉 and the 𝐿-reduct
of 𝑂(𝑓(𝑎), 𝑓(𝑏), −) is isomorphic to 𝒞 if 𝑎𝐸𝑏 and 𝒟 if ¬𝑎𝐸𝑏, no 𝐿-symbol holds on elements of 𝑉
and the sets 𝑉, and 𝑂(𝑎, 𝑏, −) for 𝑎, 𝑏 ∈ 𝑉 are pairwise disjoint.

If ℎ ∶ 𝒢1 ↪ 𝒢2 , then there is an induced embedding 𝑓(ℎ) ∶ 𝑓(𝒢1) ↪ 𝑓(𝒢2). To show that
𝑓(ℎ) is elementary we show that player II has a winning strategy in the Ehrenfeucht-Fraïssé
games 𝐺𝑛((𝑓(𝒢1), ̄𝑎), (𝑓(𝒢2), 𝑓(ℎ)( ̄𝑎)) for all 𝑛, and ̄𝑎 ∈ 𝑓(𝐺1)<𝜔 .

That 𝒢1 ↪ 𝒢2 iff 𝑓(𝒢1) ≼ 𝑓(𝒢2) it is sufficient that 𝒞⋠𝒟, 𝒟⋠𝒞 and 𝒞 ≢ 𝒟.
We can transform the structures 𝑓(𝒢) into a graph using standard codings.
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For 𝐷𝑔𝑆𝑝≊(𝑓(𝒢)) = {𝑋 ∶ 𝑋′ ∈ 𝐷𝑔𝑆𝑝≈(𝒢)} it is sufficient that

1. for all 𝒜 ≈ 𝒢 𝒜 ≥𝑇 𝑓(𝒜),
2. for all ℬ ≊ 𝑓(𝒢) there is 𝒜

2.1 with 𝑓(𝒜) ≅ ℬ,
2.2 and ℬ′ ≥𝑇

̂𝒜 ≅ 𝒜.

2.1 is essential and non-trivial, e.g. take 𝒞 = (𝜔, 𝜔 + 𝜁), 𝒟 = (𝜔 + 𝜁, 𝜔). Then we would get
that 𝑓(𝒢)′ ≥𝑇

̂𝒢 ≅ 𝒢 but the structure obtained if we use 𝒞 = (𝜔, 𝜔) = 𝒟 would elementary
embed into 𝑓(𝒢). Want that 𝑓([𝒢]≈) = [𝒢]≊ . We need 𝒞, 𝒟 with

1. 𝒞 ≡ 𝒟,
2’. for every 𝒜 ≇ 𝒞, 𝒜⋠𝒞,
2”. for every 𝒜 ≇ 𝒟, 𝒜⋠𝒟.
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that 𝑓(𝒢)′ ≥𝑇

̂𝒢 ≅ 𝒢 but the structure obtained if we use 𝒞 = (𝜔, 𝜔) = 𝒟 would elementary
embed into 𝑓(𝒢).

Want that 𝑓([𝒢]≈) = [𝒢]≊ . We need 𝒞, 𝒟 with

1. 𝒞 ≡ 𝒟,
2’. for every 𝒜 ≇ 𝒞, 𝒜⋠𝒞,
2”. for every 𝒜 ≇ 𝒟, 𝒜⋠𝒟.
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Minimal Models

Definition
1. A structure 𝒜 is minimal, if there is no ℬ such that ℬ ≼ 𝒜.

Question (Vaught): Does every countable complete theory with a minimal model have a prime
model?

Theorem (Fuhrken ’66)
There is a countable complete theory with 2ℵ0 minimal models.

Theorem (Shelah ’78)
For every 𝜅 ≤ ℵ0 , there is a countable complete theory with 𝜅 minimal models.

Theorem (Hjorth ’96)
In 𝐿 there is a countable complete theory with ℵ1 many minimal models but no perfect set of
minimal models.
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Shelah’s theory

For 𝜈 ∈ 2<𝜔 define 𝐹𝜈 ∶ 2𝜔 → 2𝜔 , 𝜎 ↦ 𝜈 +2 𝜎 (where 𝜈 is interpreted as 𝜈⌢ ̄0 and +2 is
base 2 addition).

Let 𝑅𝜈 = {𝜎 ∈ 2𝜔 ∶ 𝜈 ⪯ 𝜎} and consider the theory 𝑇 of

𝒜 = (2𝜔, ⟨𝐹𝜈⟩𝜈∈2<𝜔 , ⟨𝑅𝜈⟩𝜈∈2<𝜔).

Shelah used 𝑇 and variations of 𝑇 to prove his theorem. It is easy to see that

1. 𝑇 has quantifier elimination,
2. the substructure ⟨𝜎⟩ generated by 𝜎 ∈ 2𝜔 is an elementary substructure of 𝒜,
3. ⟨𝜎⟩ is minimal,
4. if ∃∞𝑖 𝜎(𝑖) ≠ 𝜏(𝑖), then there is a Σ𝑐

2 sentence distuingishing ⟨𝜎⟩ and ⟨𝜏⟩.

∃𝑥 ⋀
𝜈⪯𝜎

𝑅𝜎(𝑥)
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Lemma
Let 𝑋 be Δ0

2(𝑌 ) for a set 𝑌, then there exists a sequence of structures (𝒞𝑖)𝑖∈𝜔 , uniformly
computable in 𝑌, such that

𝒞𝑖 ≅ {
⟨ ̄0⟩ if 𝑖 ∈ 𝑋,
⟨ ̄1⟩ if 𝑖 ∉ 𝑋.

We do a Marker extension with ⟨ ̄0⟩ and ⟨ ̄1⟩ to obtain that for every graph 𝒢, there is a graph ̂𝒢
such that

𝐷𝑔𝑆𝑝≊( ̂𝒢) = {𝑋 ∶ 𝑋′ ∈ 𝐷𝑔𝑆𝑝≈(𝒢)}.
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≊-spectra don’t jump

(Harrison-Trainor ’22) There are sets 𝑆1 ∣𝑇 𝑆2 such that {𝑋 ≥𝑇 𝑆1} ∪ {𝑋 ≥𝑇 𝑆2} is the
bi-embeddability spectrum of a structure.

⟹ ∃𝒢 with 𝐷𝑔𝑆𝑝≊(𝒢) = {𝑌 ∶ 𝑌 ′ ∈ {𝑋 ≥𝑇 𝑆1} ∪ {𝑋 ≥𝑇 𝑆2}}

(R. ’18) No elementary bi-embeddability spectrum can be the union of cones above incomparable
degrees.

But 𝐷𝑔𝑆𝑝≊( ̂𝒢)′ = {𝑋 ≥𝑇 𝑆1} ∪ {𝑋 ≥𝑇 𝑆2}.

Corollary
There is an elementary bi-embeddability spectrum 𝒳 such that 𝒳′ = {𝑋′ ∶ 𝑋 ∈ 𝒳} is not the
elementary bi-embeddability spectrum of a structure.

Isomorphism spectra do jump and its an open question whether ≈ or ≡ spectra jump.
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A final note on complexities

The reduction ≈𝐺→≊𝐺 is functorial and has a pseudo-inverse:

There is a computable functor 𝐹 ∶ (𝐺, ↪) → (𝐺, ≼) and a functor
𝐻 ∶ (𝐹(𝐺), ≼) → (𝐺, ↪) such that the 𝐹 ∘ 𝐺 and 𝐺 ∘ 𝐹 are naturally isomorphic to the
identity functors.
𝐻 is not computable: Given 𝐹(𝐺) it takes one jump to decide whether a structure coding the
edge relation between 𝑎𝑓 and 𝑏𝑓 is isomorphic to ⟨0⟩ or ⟨1⟩.

Write 𝒜 ≼𝑛 ℬ if there is an embedding 𝑓 ∶ 𝒜 → ℬ such that 𝑛-𝑡𝑝𝒜( ̄𝑎) = 𝑛-𝑡𝑝𝑓(𝒜)(𝑓( ̄𝑎))
for all ̄𝑎 ∈ 𝐴𝜔 and ≊𝑛 for the induced equivalence relation.

Corollary
The ≊𝑛 relation on graphs is aΣΣΣ1

1-complete equivalence relation for all 𝑛.

Corollary
There is no computable functor 𝐹 ∶ (𝐺, ↪) → (𝐺, ≼) with computable (continuous)
pseudo-inverse.

18



A final note on complexities

The reduction ≈𝐺→≊𝐺 is functorial and has a pseudo-inverse:

There is a computable functor 𝐹 ∶ (𝐺, ↪) → (𝐺, ≼) and a functor
𝐻 ∶ (𝐹(𝐺), ≼) → (𝐺, ↪) such that the 𝐹 ∘ 𝐺 and 𝐺 ∘ 𝐹 are naturally isomorphic to the
identity functors.
𝐻 is not computable: Given 𝐹(𝐺) it takes one jump to decide whether a structure coding the
edge relation between 𝑎𝑓 and 𝑏𝑓 is isomorphic to ⟨0⟩ or ⟨1⟩.

Write 𝒜 ≼𝑛 ℬ if there is an embedding 𝑓 ∶ 𝒜 → ℬ such that 𝑛-𝑡𝑝𝒜( ̄𝑎) = 𝑛-𝑡𝑝𝑓(𝒜)(𝑓( ̄𝑎))
for all ̄𝑎 ∈ 𝐴𝜔 and ≊𝑛 for the induced equivalence relation.

Corollary
The ≊𝑛 relation on graphs is aΣΣΣ1

1-complete equivalence relation for all 𝑛.

Corollary
There is no computable functor 𝐹 ∶ (𝐺, ↪) → (𝐺, ≼) with computable (continuous)
pseudo-inverse. 18



Rossegger, Dino. 2021. “Degree Spectra of Analytic Complete Equivalence Relations.” The Journal of
Symbolic Logic online: 1–14. https://doi.org/10.1017/jsl.2021.82.

Thank you!
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