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Structural complexity of countable models

Goal: We would like to measure how complicated countable mathematical structures are structurally.

Examples of structures: Groups, Rings, Linear orderings, Vector spaces,…

In general a structure 𝒮 is given by a countable set 𝑆 its universe plus relation, function and
constants on this set as specified by its vocabulary.

• How hard is it to identify elements of a structure (up to automorphism)?

• How complicated is it to define an isomorphism given two isomorphic structures?

• How complicated is it to identify structures isomorphic to a given structure among other
countable structures in the same vocabulary?

In this project we are interested in the structural complexity of models of arithmetic.
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Peano arithmetic

Peano arithmetic PA are first-order axioms for arithmetic in the vocabulary (0, 1, +, =, ⋅).

Discrete Semiring axioms:

∀𝑥(0 ≠ 0 + 1) ∀𝑥, 𝑦(𝑥 + 1 = 𝑥 + 1 ⟹ 𝑥 = 𝑦)
∀𝑥(𝑥 + 0 = 𝑥) ∀𝑥, 𝑦(𝑥 + (𝑦 + 1) = (𝑥 + 𝑦) + 1)
∀𝑥(𝑥 ⋅ 0 = 0) ∀𝑥, 𝑦(𝑥 ⋅ 𝑆(𝑦) = 𝑥 ⋅ 𝑦 + 𝑥)

Induction schema: For all first order formulas in the language of arithmetic

∀ ̄𝑦 ((𝜑(0, ̄𝑦) ∧ ∀𝑥 (𝜑(𝑥, ̄𝑦) ⟹ 𝜑(𝑥 + 1, ̄𝑦))) ⟹ ∀𝑥(𝜑(𝑥, ̄𝑦)))

The standard model of arithmetic is the structure 𝒩 = (ℕ, 0, 1, +, ⋅).

Peano arithmetic is a first-order theory (quantification over elements of the universe) and thus
suffers from the usual first-order theoretic limitations.
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Non-standard completions

Theorem (Gödel ’31, First incompleteness theorem)
Every consistent recursive first-order theory 𝑇 in which we can formalize PA is incomplete, i.e., there
are sentences 𝜑 such that neither 𝜑 nor ¬𝜑 are provable from 𝑇.

(We assume PA is consistent)

1. There are first-order sentences 𝜑 true about 𝒩 that are not provable in PA.
2. True arithmetic, 𝑇 ℎ(𝒩), is only one possible completion. There are 𝒮 ⊧ PA such that 𝒮 ⊧ 𝜑
while 𝒩 ⊧ ¬𝜑.
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Non-standard models

Theorem (Gödel ’30, Compactness theorem)
Let 𝑋 be a countable set of first-order sentences. If every finite subset of 𝑋 has a model, then 𝑋
has a model.

Add a new constant symbol 𝑐 to the vocabulary of PA and take the set 𝑋 = {𝑐 ≥ n ∶ 𝑛 ∈ ℕ}.
Take 𝑌 ⊆𝑓𝑖𝑛𝑖𝑡𝑒 𝑇 ℎ(𝒩) ∪ 𝑋. Then (𝒩, 𝑐) ⊧ 𝑌 with 𝑐 larger then the largest constant in 𝑌. So, by
compactness, 𝑇 ℎ(𝒩) ∪ 𝑋 is satisfiable. But 𝒩 does not satisfy 𝑇 ℎ(𝒩) ∪ 𝑋. Hence, there are
non-standard models of 𝑇 ℎ(𝒩) that have infinitely large numbers.

In particular, first-order logic is no help in obtaining structural characterizations.
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Infinitary logic

The infinitary logic 𝐿𝜔1𝜔 is an extension of first-order logic that allows formulas to have infinite
conjunctions and disjunctions.

Example:
𝜓 = ∀𝑥 ⋁⋁

𝑛∈ℕ
(𝑥 = n) ∧ ∀𝑥∃𝑦(𝑦 > 𝑥)

𝒩 is the unique structure that satisfies the discrete semiring part of PA and 𝜓. The finite
conjunction of all these sentences is a Scott sentence for 𝒩.

Theorem (Scott 1963)
For every countable structure 𝒜 there is a sentence in the infinitary logic 𝐿𝜔1𝜔 – its Scott sentence
– characterizing 𝒜 up to isomorphism among countable structures.

Measure the complexity of a structure by the complexity of its Scott sentence.
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Quantifier complexity in 𝐿𝜔1𝜔

1. A formula is Σin
0 = Πin

0 if it is a finite quantifier free formula.
2. A formula is Σin

𝛼 for 𝛼 > 0, if it is of the form ⋁⋁
𝑖∈𝜔

∃ ̄𝑥𝑖𝜓𝑖( ̄𝑥𝑖) where all 𝜓𝑖 ∈ Πin
𝛽𝑖
for

𝛽𝑖 < 𝛼.
3. A formula is Πin

𝛼 for 𝛼 > 0, if it is of the form ⋀⋀
𝑖∈𝜔

∀ ̄𝑥𝑖𝜓𝑖( ̄𝑥𝑖) where all 𝜓𝑖 ∈ Σin
𝛽𝑖
for

𝛽𝑖 < 𝛼.
4. 𝐿𝜔1𝜔 = ⋃𝛼<𝜔1

Πin
𝛼

• 𝒩 has a Πin
2 Scott sentence.

• Let 𝑝𝑛 denote the (formal term) for the 𝑛th prime in PA and let 𝑋 ⊆ 𝜔. Then

𝜑 = ∃𝑥 (⋀⋀
𝑛∈𝑋

∃𝑦(𝑦 ⋅ 𝑝𝑛 = 𝑥) ∧ ⋀⋀
𝑛∉𝑋

∀𝑦(𝑦 ⋅ 𝑝𝑛 ≠ 𝑥))

is a Σin
3 formula and 𝒜 ⊧ 𝜑 iff 𝑋 is in the Scott set of 𝒜.
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Towards a formal framework

The proof of Scott’s theorem heavily relies on the analysis of the 𝛼-back-and-forth relations for
countable ordinals 𝛼. The most useful definition is due to Ash and Knight:
Definition

1. (𝒜, ̄𝑎) ≤0 (ℬ, 𝑏̄) if all atomic fromulas true of 𝑏̄ are true of ̄𝑎 and vice versa.
2. For non-zero 𝛾 < 𝜔1 , (𝒜, ̄𝑎) ≤𝛾 (ℬ, 𝑏̄) if for all 𝛽 < 𝛾 and ̄𝑑 ∈ 𝐵<𝜔 there is ̄𝑐 ∈ 𝐴<𝜔

such that (ℬ, 𝑏̄ ̄𝑑) ≤𝛽 (𝒜, ̄𝑎 ̄𝑐).

In an attempt to measure structural complexity, various notions of ranks have been used.

E.g. 𝑟(𝒜) is the least 𝛼 such that for all ̄𝑎, 𝑏̄ ∈ 𝐴 if ̄𝑎 ≤𝛼 𝑏̄, then ̄𝑎 ≤𝛽 𝑏̄ for all 𝛽 > 𝛼.
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A robust Scott rank

Theorem (Montalbán 2015)
The following are equivalent for countable 𝒜 and 𝛼 < 𝜔1 .

1. Every automorphism orbit of 𝒜 is Σin
𝛼 -definable without parameters.

2. 𝒜 has a Πin
𝛼+1 Scott sentence.

3. 𝒜 is uniformlyΔΔΔ0
𝛼-categorical. (∃Φ∃𝑋∀ℬ ≅ 𝒞 ≅ 𝒜(Φ𝑋⊕(𝒞⊕ℬ)(𝛼) ∶ ℬ ≅ 𝒞)

4. 𝐼𝑠𝑜(𝒜) isΠΠΠ0
𝛼+1 .

5. No tuple in 𝒜 is 𝛼-free.
The least 𝛼 satisfying the above is the (parameterless) Scott rank of 𝒜.

The standard model 𝒩 has Scott rank 1 as it has a Πin
2 Scott sentence.
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Connection to ≤𝛼

Theorem (Ash, Knight)
For two countable structures 𝒜 the following are equivalent.

1. (𝒜, ̄𝑎) ≤𝛼 (ℬ, 𝑏̄).
2. All Σin

𝛼 sentences true of 𝑏̄ in ℬ are true of ̄𝑎 in 𝒜.
3. All Πin

𝛼 sentences true of ̄𝑎 in 𝒜 are true of 𝑏̄ in ℬ.

In other words, (𝒜, ̄𝑎) ≤𝛼 (ℬ, 𝑏̄) iff Πin
𝛼 -𝑡𝑝𝒜( ̄𝑎) ⊆ Πin

𝛼 -𝑡𝑝ℬ(𝑏̄).

Definition
A tuple ̄𝑎 in 𝒜 is 𝛼-free if

∀(𝛽 < 𝛼)∀𝑏̄∃ ̄𝑎′𝑏̄′( ̄𝑎𝑏̄ ≤𝛽 ̄𝑎′𝑏̄′ ∧ ̄𝑎 ≰𝛼 ̄𝑎′).

10



Connection to ≤𝛼

Theorem (Ash, Knight)
For two countable structures 𝒜 the following are equivalent.

1. (𝒜, ̄𝑎) ≤𝛼 (ℬ, 𝑏̄).
2. All Σin

𝛼 sentences true of 𝑏̄ in ℬ are true of ̄𝑎 in 𝒜.
3. All Πin

𝛼 sentences true of ̄𝑎 in 𝒜 are true of 𝑏̄ in ℬ.

In other words, (𝒜, ̄𝑎) ≤𝛼 (ℬ, 𝑏̄) iff Πin
𝛼 -𝑡𝑝𝒜( ̄𝑎) ⊆ Πin

𝛼 -𝑡𝑝ℬ(𝑏̄).

Definition
A tuple ̄𝑎 in 𝒜 is 𝛼-free if

∀(𝛽 < 𝛼)∀𝑏̄∃ ̄𝑎′𝑏̄′( ̄𝑎𝑏̄ ≤𝛽 ̄𝑎′𝑏̄′ ∧ ̄𝑎 ≰𝛼 ̄𝑎′).

10



Scott ranks in classes of structures

Definition (Makkai 1981)
The Scott spectrum of a theory 𝑇 is the set

𝑆𝑆(𝑇 ) = {𝛼 ∈ 𝜔1 ∶ there is a countable model of 𝑇 with Scott rank 𝛼}.

Here 𝑇 might be a sentence in 𝐿𝜔1𝜔 .

• Ash (1986) characterized back-and-forth relations of well-orderings. The following is a corollary:
𝑆𝑅(𝑛) = 1, 𝑆𝑅(𝜔𝛼) = 2𝛼, 𝑆𝑅(𝜔𝛼 + 𝜔𝛼) = 2𝛼 + 1.

• 𝑆𝑆(𝐿𝑂) = 𝜔1 − 0

• 1 ∈ 𝑆𝑆(𝑃 𝐴)
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Formalizing back-and-forth relations

Throughout this talk ℳ and 𝒩 denote countable non-standard models of 𝑃𝐴.

Recall that ℳ-finite sets can be coded by single elements, i.e., given 𝑆 ⊆𝑓𝑖𝑛 𝑀 code it using
∑𝑠∈𝑆 2𝑠 . Thus finite strings 𝑢̄ ∈ 𝑀<𝜔 can be considered as the ℳ-finite set
{⟨𝑖, 𝑢̄(𝑖)⟩ ∶ 𝑖 < |𝑢̄|}.

Let 𝑇 𝑟Δ0
1
be a truth predicate for bounded formulas and define the formal back-and-forth relations

by induction on 𝑛:

𝑢̄ ≤𝑎
0 ̄𝑣 ⇔ ∀(𝑥 ≤ 𝑎)(𝑇 𝑟Δ0

1
(𝑥, 𝑢̄) → 𝑇 𝑟Δ0

1
(𝑥, ̄𝑣))

𝑢̄ ≤𝑎
𝑛+1 ̄𝑣 ⇔ ∀ ̄𝑥∃ ̄𝑦(| ̄𝑥| ≤ 𝑎 → (| ̄𝑦| ≤ 𝑎 ∧ ̄𝑣 ̄𝑥 ≤𝑎

𝑛 𝑢̄ ̄𝑦))
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Formalizing back-and-forth relations

Proposition
The formal back-and-forth relations ≤𝑥

𝑛 satisfy the following properties for all 𝑛:

1. 𝑃𝐴 ⊢ ∀𝑢̄, ̄𝑣, 𝑎, 𝑏((𝑎 ≤ 𝑏 ∧ 𝑢̄ ≤𝑏
𝑛 ̄𝑣) → 𝑢̄ ≤𝑎

𝑛 ̄𝑣)
2. 𝑃𝐴 ⊢ ∀𝑢̄, ̄𝑣, 𝑎(𝑢̄ ≤𝑎

𝑛+1 ̄𝑣 → 𝑢̄ ≤𝑎
𝑛 ̄𝑣)

Proposition

Let ̄𝑎, 𝑏̄ ∈ 𝑀. Then ̄𝑎 ≤𝑛 𝑏̄ ⇔ ∀(𝑚 ∈ 𝜔)ℳ ⊧ ̄𝑎 ≤𝑚̇
𝑛 𝑏̄. Furthermore, if there is 𝑐 ∈ 𝑀 − ℕ

such that ℳ ⊧ ̄𝑎 ≤𝑐
𝑛 𝑏̄, then ̄𝑎 ≤𝑛 𝑏̄.
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Back-and-forth and types

Lemma

For every ̄𝑎, 𝑏̄ ∈ 𝑀<𝜔 , ̄𝑎 ≤𝜔 𝑏̄ if and only if 𝑡𝑝( ̄𝑎) = 𝑡𝑝(𝑏̄).

Recall that ℳ is homogeneous if every partial elementary map 𝑀 → 𝑀 is extendible to an
automorphism.

Lemma

If ℳ is not homogeneous then 𝑆𝑅(ℳ) > 𝜔.
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Homogeneous models

Proposition

If ℳ is homogeneous, then 𝑆𝑅(ℳ) ≤ 𝜔 + 1.

Note that every completion 𝑇 of 𝑃𝐴 has an atomic model. Take ℳ ⊆ 𝑇 and the subset of all
Skolem terms without parameters. This is an elementary substructure and all types are isolated. By
the least number principle this model is rigid and its automorphism orbits in ℳ are singletons.

Theorem (Montalbán, R.)

If ℳ is atomic, then 𝑆𝑅(ℳ) = 𝜔.

Theorem (Montalbán, R.)

For any nonstandard model ℳ, 𝑆𝑅(ℳ) ≥ 𝜔. In particular (1, 𝜔) ∩ 𝑆𝑆(𝑃𝐴) = ∅. If 𝑇 ⊇ 𝑃𝐴
does not have a standard model, then 1 ∉ 𝑆𝑆(𝑇 ).
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Infinitary Interpretability

In order to obtain a characterization of the set of possible Scott ranks, a first try is to see if there is a
reduction from linear orders to models of PA.

Definition (Harrison-Trainor, R. Miller, Montalbán 2018)

A structure 𝒜 = (𝐴, 𝑃 𝒜
0 , … ) is infinitary interpretable in ℬ if there exists a 𝐿𝜔1𝜔 definable in ℬ

sequence of relations (𝐷𝑜𝑚ℬ
𝒜, ∼, 𝑅0, … ) such that

1. 𝐷𝑜𝑚ℬ
𝒜 ⊆ 𝐵<𝜔 ,

2. ∼ is an equivalence relation on 𝐷𝑜𝑚ℬ
𝒜 ,

3. 𝑅𝑖 ⊆ (𝐵<𝜔)𝑎𝑃𝑖 is closed under ∼ on 𝐷𝑜𝑚ℬ
𝒜 ,

and there exists a function 𝑓𝒜
ℬ ∶ (𝐷𝑜𝑚ℬ

𝒜, 𝑅0, … )/∼ ≅ (𝐴, 𝑃 𝒜
0 , … ), the interpretation of 𝒜 in ℬ. If the

formulas in the interpretation are Δin
𝛼 then 𝒜 is Δin

𝛼 interpretable in ℬ.
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𝒜 ,

3. 𝑅𝑖 ⊆ (𝐵<𝜔)𝑎𝑃𝑖 is closed under ∼ on 𝐷𝑜𝑚ℬ
𝒜 ,

and there exists a function 𝑓𝒜
ℬ ∶ (𝐷𝑜𝑚ℬ

𝒜, 𝑅0, … )/∼ ≅ (𝐴, 𝑃 𝒜
0 , … ), the interpretation of 𝒜 in ℬ. If the

formulas in the interpretation are Δin
𝛼 then 𝒜 is Δin

𝛼 interpretable in ℬ.
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Bi-interpretability and Automorphism groups

Definition (Harrison-Trainor, R. Miller, Montalbán 2018)

Two structures 𝒜 and ℬ are bi-interpretable if there are infinitary interpretations of one in the
other such that the compositions

𝑓𝒜
ℬ ∘ ̂𝑓ℬ

𝐴 ∶ 𝐷𝑜𝑚𝐷𝑜𝑚ℬ
𝒜

ℬ → ℬ and 𝑓ℬ
𝒜 ∘ ̂𝑓𝒜

ℬ ∶ 𝐷𝑜𝑚𝐷𝑜𝑚𝒜
ℬ

𝒜 → 𝒜

are inf. definable in ℬ and 𝒜 respectively.

Theorem (Harrison-Trainor, R. Miller, Montalbán 2018)

𝒜 and ℬ are infinitary bi-interpretable iff their automorphism groups are Borel-measurably
isomorphic.

17



Bi-interpretability and Automorphism groups

Definition (Harrison-Trainor, R. Miller, Montalbán 2018)

Two structures 𝒜 and ℬ are bi-interpretable if there are infinitary interpretations of one in the
other such that the compositions

𝑓𝒜
ℬ ∘ ̂𝑓ℬ

𝐴 ∶ 𝐷𝑜𝑚𝐷𝑜𝑚ℬ
𝒜

ℬ → ℬ and 𝑓ℬ
𝒜 ∘ ̂𝑓𝒜

ℬ ∶ 𝐷𝑜𝑚𝐷𝑜𝑚𝒜
ℬ

𝒜 → 𝒜

are inf. definable in ℬ and 𝒜 respectively.

Theorem (Harrison-Trainor, R. Miller, Montalbán 2018)

𝒜 and ℬ are infinitary bi-interpretable iff their automorphism groups are Borel-measurably
isomorphic.

17



Gaifman’s Theorem

Theorem (Gaifman 1976)

Let 𝑇 be a completion of 𝑃𝐴 and ℒ a linear order. Then there is a model 𝒩ℒ of 𝑇 such that
𝐴𝑢𝑡(𝒩ℒ) ≅ 𝐴𝑢𝑡(ℒ).

• A cut of a model ℳ is a non-empty initial segment of ℳ closed under successor.
• 𝒩 is an end-extension of ℳ if ℳ ≼ 𝒩 and ℳ is a cut of 𝒩.
• 𝒩 is a minimal extension of ℳ if there is no 𝒦 with ℳ ≺ 𝒦 ≺ 𝒩.

Theorem (Gaifman 1976)

Let ℳ be any model of 𝑃𝐴, then ℳ has a minimal end extension.
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ℒ-canonical extension

The minimal end extension is obtained by taking ℳ(𝑎), the Skolem hull of ℳ with a new element 𝑎
having type 𝑝(𝑥) where

• 𝑝(𝑥) is indiscernible: for 𝐼 ⊆ 𝑀 with every 𝑖 ∈ 𝐼 having type 𝑝(𝑥) and ordered sequences
̄𝑎, 𝑏̄ ∈ 𝐼<𝜔 , 𝑡𝑝( ̄𝑎) = 𝑡𝑝(𝑏̄),

• 𝑝(𝑥) is unbounded: there is no Skolem constant 𝑐 such that 𝑥 ≤ 𝑐 ∈ 𝑝(𝑥).

The version of Gaifman’s theorem above is obtained by taking an ℒ-canonical extension for given ℒ
over the prime model 𝒩, i.e., take an indiscernible, unbounded type 𝑝(𝑥), and construct the model

𝒩ℒ = ⋃
𝑙1≤⋯≤𝑙|𝑙|∈𝐿<𝜔

𝒩(𝑙1)(𝑙2) … (𝑙|𝑙|)

Analysis of the construction shows that the elementary diagram of 𝒩ℒ is Δin
1 interpretable in ℒ.

We still need to recover ℒ from 𝒩ℒ to obtain a bi-interpretation
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Mind the gap

Definition

Fix ℳ ⊧ 𝑃𝐴 and let ℱ be the set of definable functions 𝑓 ∶ 𝑀 → 𝑀 for which
𝑥 ≤ 𝑓(𝑥) ≤ 𝑓(𝑦) whenever 𝑥 ≤ 𝑦. For any 𝑎 ∈ 𝑀 let 𝑔𝑎𝑝(𝑎) be the smallest set 𝑆 with 𝑎 ∈ 𝑆
and if 𝑏 ∈ 𝑆, 𝑓 ∈ ℱ, and 𝑏 ≤ 𝑥 ≤ 𝑓(𝑏) or 𝑥 ≤ 𝑏 ≤ 𝑓(𝑥), then 𝑥 ∈ 𝑆.

Define 𝑎 =𝑔 𝑏 as 𝑎 =𝑔 𝑏 ⇔ 𝑎 ∈ 𝑔𝑎𝑝(𝑏). The gap relation partitions ℳ into intervals.

Theorem (Gaifman 1976)

• If 𝑎 ∈ 𝑔𝑎𝑝(𝑏) and 𝑎, 𝑏 both realize the same minimal type 𝑝(𝑥), then 𝑎 = 𝑏.
• If 𝑎 ∈ 𝑔𝑎𝑝(𝑏) and 𝑎 ⊧ 𝑝(𝑥), then 𝑎 ∈ 𝑆𝑐𝑙(𝑏).
• 𝒩ℒ/=𝑔 is order isomorphic to 1 + ℒ.

𝑎 ∈ 𝐷𝑜𝑚ℒ
𝒩ℒ

⇔ 𝑡𝑝(𝑎) = 𝑝(𝑥) 𝑎 ∼ 𝑏 ⇔ 𝑎 = 𝑏 𝑎 ≤ 𝑏 ⇔ 𝑎 ≤𝒩ℒ 𝑏
Πin

𝜔 Δ0
1 Δ0

1
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Properties of the interpretation

• The elementary diagram of 𝒩ℒ is Δin
1 interpretable in ℒ

• ℒ is Δin
𝜔+1 interpretable in 𝒩ℒ

• ℒ and 𝒩ℒ are Δin
𝜔+1 bi-interpretable

• The interpretation is “asymmetric”

What could be the reason for that? It turns out we can interpret even more in ℒ!
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The structural 𝛼-jump
Definition

Given a 𝜏-structure 𝒜 and a countable ordinal 𝛼 > 0 fix an injective enumeration ( ̄𝑎𝑖)𝑖∈𝜔 of
representatives of the 𝛼-back-and-forth equivalence classes in 𝒜. The canonical structural 𝛼-jump
𝒜(𝛼) of 𝒜 is the structure in the vocabulary 𝜏(𝛼) obtained by adding to 𝜏 relation symbols 𝑅𝑖
interpreted as

𝑏̄ ∈ 𝑅𝒜(𝛼)
𝑖 ⇔ ̄𝑎𝑖 ≤𝛼 𝑏̄.

We will use the convention that 𝒜(0) = 𝒜.

Proposition

Let 𝒜 be a 𝜏-structure and 𝜑 be a Πin
𝛼 𝜏-formula. Then there is a Σin

1 𝜏(𝛼) formula 𝜓 such that for
all ̄𝑎 ∈ 𝐴<𝜔

(𝒜, ̄𝑎) ⊧ 𝜑( ̄𝑎) ⇔ (𝒜(𝛼), ̄𝑎) ⊧ 𝜓( ̄𝑎).
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Properties of the structural 𝛼-jump

Proposition

Let 𝒜 be a structure and 𝛼, 𝛽 < 𝜔1 where 𝛽 > 0. Then
(𝒜(𝛼), ̄𝑎) ≤𝛽 (𝒜(𝛼), 𝑏̄) ⇔ (𝒜, ̄𝑎) ≤𝛼+𝛽 (𝒜, 𝑏̄).

Corollary

For any structure 𝒜 and non-zero 𝛼, 𝛽 < 𝜔1 , 𝑆𝑅(𝒜) = 𝛼 + 𝛽 if and only if 𝑆𝑅(𝒜(𝛼)) = 𝛽.

Recall that two Δin
1 bi-interpretable structures have the same Scott rank. So if ℬ is Δin

1
bi-interpretable with 𝒜(𝛼) , then 𝑆𝑅(𝒜) = 𝛼 + 𝑆𝑅(ℬ).
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Definability of the structural 𝛼-jump

Let Γ be a set of formulas. Then Γ is Πin
𝛼 -supported in 𝒜 if there is a Πin

𝛼 formula 𝜑 such that

𝒜 ⊧ ∃ ̄𝑥𝜑( ̄𝑥) ∧ ∀ ̄𝑥 (𝜑( ̄𝑥) → ⋀⋀
𝛾∈Γ

𝛾( ̄𝑥)) .

For 𝛼 > 1, there are uncountably many Πin
𝛼 -types. The following might thus be a little bit surprising.

Proposition (Montalbán)

For every ordinal, every structure 𝒜 and every tuple ̄𝑎 ∈ 𝐴<𝜔 , Πin
𝛼 -𝑡𝑝𝒜( ̄𝑎) is Πin

𝛼 -supported in 𝒜.

Corollary

For any structure 𝒜 and non-zero ordinal 𝛼, 𝒜(𝛼) is Δin
𝛼+1 interpretable in 𝒜.
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Bi-interpretations and the structural 𝛼-jump

Corollary

For all countable ordinals 𝛼 and 𝛽, the following are equivalent.

1. 𝒜(𝛾) is Δin
1 bi-interpretable with ℬ(𝛼) .

2. 𝒜 is infinitary bi-interpretable with ℬ such that
2.1 the interpretation of 𝒜 in ℬ and 𝑓𝒜

ℬ ∘ ̃𝑓ℬ
𝒜 are Δin

𝛼+1 in ℬ,
2.2 the interpretation of ℬ in 𝒜 and 𝑓ℬ

𝒜 ∘ ̃𝑓𝒜
ℬ are Δin

𝛾+1 in 𝒜,

2.3 for every ̄𝑎 ∈ 𝐷𝑜𝑚ℬ
𝒜 , { ̄𝑐 ∶ (𝒜ℬ, ̄𝑐) ⊧ Πin

𝛾 -𝑡𝑝𝒜ℬ( ̄𝑎)} is Δin
𝛼+1 definable in ℬ,

2.4 for every 𝑏̄ ∈ 𝐷𝑜𝑚𝒜
ℬ , { ̄𝑐 ∶ (ℬ𝒜, ̄𝑐) ⊧ Πin

𝛼 -𝑡𝑝ℬ𝒜(𝑏̄)} is Δin
𝛾+1 definable in 𝒜.

Recall that 𝒩ℒ is Δin
1 interpretable in ℒ and ℒ is Δin

𝜔+1 interpretable in 𝒩ℒ . Hence, taking
𝒜 = ℒ and ℬ = 𝒩ℒ , 2.1, 2.2 are satisfied for 𝛼 = 𝜔, 𝛾 = 0. It remains to show that the elements
satisfying a fixed Πin

𝜔 -type in 𝒩ℒ are both Δin
1 definable in ℒ.
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Revisiting Gaifman’s reduction

Gaifman’s reduction shows that the elementary diagram of 𝒩ℒ is Δin
1 interpretable in ℒ. By our

result we get that {𝑏̄ ⊧ Πin
𝜔 -𝑡𝑝( ̄𝑎)} = {𝑏̄ ⊧ 𝑡𝑝( ̄𝑎)}. Clearly, for given ̄𝑎 ∈ 𝐷𝑜𝑚ℒ

𝒩ℒ
the sets

{𝑏̄ ⊧ 𝑡𝑝( ̄𝑎)} is Πin
1 definable in ℒ.

To show that it is also Πin
1 definable notice that the following claim holds.

Lemma

Let 𝑠 be a Skolem term and 𝑎 = 𝑠(𝑙1, … , 𝑙𝑛) where 𝑙1 < ⋯ < 𝑙𝑛 ∈ 𝐿. If 𝑏 = 𝑠(𝑘1, … , 𝑘𝑛) for
some 𝑘1 < ⋯ < 𝑘𝑛 ∈ 𝐿 then 𝑏 ⊧ 𝑡𝑝(𝑎).

Thus every set {𝑏̄ ⊧ 𝑡𝑝( ̄𝑎)} is the union of Skolem terms with parameters ordered ℒ-tuples. Let
(𝑠𝑖)𝑖∈𝜔 be a listing of these Skolem terms for 𝑡𝑝( ̄𝑎). We get that the set is thus Πin

1 definable.

Hence, ℒ is Δin
1 bi-interpretable with 𝒩ℒ(𝛼) and 𝑆𝑅(𝒩ℒ) = 𝜔 + 𝑆(ℒ).
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Summary

Theorem (Montalbán, R.)

1. 𝑆𝑆(𝑃𝐴) = 1 ∪ {𝛼 ∶ 𝜔 ≤ 𝛼 ≤ 𝜔1}
2. If ℳ is non-homogeneous, then 𝑆𝑅(ℳ) ≥ 𝜔 + 1.
3. If ℳ is non-standard atomic , then 𝑆𝑅(ℳ) = 𝜔.
4. If ℳ is non-standard homogeneous, then 𝑆𝑅(ℳ) ∈ [𝜔, 𝜔 + 1].

Thank you!
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