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Setting the scene

A structure 𝒜 in vocabulary 𝜏 is computable if there is an algorithm that computes 𝑅𝒜
𝑖 , 𝑓𝒜

𝑖 , 𝑐𝒜
𝑖

for all 𝑅,𝑓𝑖, 𝑐𝑖 ∈ 𝜏.

Question: Given a computable structure 𝒜, what is the least Turing degree that computes an
isomorphism between all computable isomorphic copies of 𝒜?—the degree of categoricity of 𝒜.

Example 1: Consider the standard model of arithmetic 𝒩 and 𝒜 ≅ ℬ ≅ 𝒩. We can compute an
isomorphism between 𝒜 and ℬ by n𝒜 ↦ nℬ (n𝒜 is the value of the term representing 𝑛 in 𝒜.)

⟹ 𝑑𝑔𝑐𝑎𝑡(𝒜) = 0.
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Setting the scene

Example 2: 𝑑𝑔𝑐𝑎𝑡(𝜔) = 0′

(1) 𝒢 = 0 ≤ 1 ≤ 2 ≤ 3 ≤ ...
(2) ℬ is constructed using a computable 1–1 enumeration 𝑘0, 𝑘1, … of ∅′ .

ℬ = 0 2 … …2𝑛 2𝑛 + 2< < < < <

(3) 𝑆𝑢𝑐𝑐ℬ ≥𝑇 𝐾
(4) (∀𝑓 ∶ 𝒢 → ℬ) 𝑓 ≥𝑇 ∅′

(5) 0′ computes isomorphisms between any two computable copies of 𝜔.
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Setting the scene

Example 3:

(1) ℬ = ℋ ≅ 𝜔CK
1 + 𝜔CK

1 ⋅ 𝜂, a computable copy of the Harrison order without HYP
descending sequence

(2) 𝒢 = ⟨0, ℋ⟩ + ⋯ + ⟨2, ℋ⟩ + ⟨1, ℋ⟩ ≅ ℋ + ∑𝑖∈𝜔∗
ℋ ≅ ℋ

(3) If 𝑑𝑔𝑐𝑎𝑡(ℋ) ∈ HYP, then there is 𝑓 ∶ 𝒢 → ℬ ∈ HYP and 𝑓(⟨1, 0⟩), 𝑓(⟨2, 0⟩), … is a
HYP descending sequence in ℬ.

⟹ ℋ does not have HYP degree of categoricity.

Theorem (Csima, Franklin, Shore ’13)
Every degree of categoricity is hyperarithmetic.

Thus, ℋ does not have degree of categoricity.
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Degrees of categoricity

• Fröhlich and Shepherdson ’56 and Malt’sev ’62: Computable field with non-computable
transcendence basis.

• What is the least 𝛼, such that a structure 0(𝛼) computes isomorphisms between all
isomorphic copies of 𝒜?—0(𝛼)-computable categoricity

• Fokina, Kalimullin, and Miller ’10 initiated the formal study of degrees of categoricity.

Question 1: What degrees can be degrees of categoricity? Classify the degrees of categoricity.

All the examples we considered had a good copy 𝒢 and a bad copy ℬ such that the isomorphisms
between 𝒢 and ℬ witness the minimality of its degree of categoricity.

Definition
A degree of categoricity d is strong if there is 𝒜 with 𝑑𝑔𝑐𝑎𝑡(𝒜) = d and copies 𝒢 and ℬ such
that for every isomorphism 𝑓 ∶ 𝒢 → ℬ 𝑓 ≥𝑇 d.

Question 2: Is every degree of categoricity strong?
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Every c.e. degree is a degree of categoricity

Fix c.e. 𝐷 ⊆ 𝜔. We will construct two copies 𝒢 and ℬ of a graph.

They are the disjoint unions of the following connected components for all 𝑛 ∈ 𝜔.

𝒢 ℬ

𝑛 ∉ 𝐷 𝑛
𝑎𝑛

𝑏𝑛

𝑛
𝑎𝑛

𝑏𝑛

𝑎𝑛 ↦ 𝑎𝑛
𝑏𝑛 ↦ 𝑏𝑛

𝑛 ↘ 𝐷 𝑛
𝑎𝑛

𝑏𝑛

𝑛
𝑎𝑛

𝑏𝑛

𝑎𝑛 ↦ 𝑏𝑛
𝑏𝑛 ↦ 𝑎𝑛

Proposition
Every c.e. degree is a degree of categoricity.
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A little history

The following are degrees of categoricity:

• Every degree d-c.e. in and above 0(𝑛) , 0(𝜔) (Fokina, Kalimullin, Miller ’10)

• Every degree d-c.e. in and above 0(𝛼) for 𝛼 a comp. successor, 0(𝜆) for 𝜆 comp. limit (Csima,
Franklin, Shore ’13)

• Every degree c.e. in and above 0(𝜆) for 𝜆 a comp. limit (Csima, Deveau, Harrison-Trainor,
Mahmoud ’18)

• Every Δ0
2 degree is a degree of categoricity. (Csima, Ng ’21):

All of these examples use similar coding ideas to the one for c.e. degrees. The codings get more
and more complicated and are then combined with Marker extensions (Pairs of structures).
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Towards a characterization

Definition
A degree d is treeable if there exists a computable tree 𝑇 ⊆ 𝜔<𝜔 and 𝑓 ∈ d such that 𝑓 ∈ [𝑇 ]
and (∀𝑔 ∈ [𝑇 ])𝑓 ≤𝑇 𝑔.

Theorem (Csima, R. ’22)
Every degree of categoricity is treeable.

Proof sketch.
Let 𝐼(𝒜) = {𝑒 ∶ 𝜑𝑒 ≅ 𝒜}. We have that 𝑓 computes an isomorphism between every
computable copy of 𝒜 iff ∀𝑗(∃𝑔 ≤𝑇 𝑓)(𝑗 ∈ 𝐼(𝒜) → 𝑔 ∶ 𝜑𝑒 ≅ 𝜑𝑗).

If d is the degree of categoricity of 𝒜, then d ∈ HYP. 𝐼(𝒜) is arithmetical in d and thus
𝐼(𝒜) ∈ HYP. Hence, the above formula is Σ1

1 and thus there is a computable tree 𝑇 such that
its paths are in degree-preserving bijection with solutions to the above formula. 𝑇 witnesses
treeability of d.

Question: Is every treeable degree a degree of categoricity?
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Results of Turetsky

Theorem (Turetsky ’20)
(1) There is a computable structure 𝒜1 that has degree of categoricity 0 but high Scott rank.
(2) There is a computable structure 𝒜2 without degree of categoricity and computable

dimension 2.

A structure 𝒜 has computable dimension 𝑛 ∈ (𝜔 ∪ {𝜔}) if it has 𝑛 computable copies up to
computable isomorphism.

𝒜2 is obtained from 𝒜1 by a simple trick.

Idea to obtain 𝒜1 :

(1) Given a computable tree 𝑇 build a computable structure 𝒜 such that 𝑎𝑢𝑡(𝒜) − 𝑖𝑑 ≡𝑤 [𝑇 ]

(2) Force 𝒜 to have degree of categoricity 0

(3) Take 𝑇 such that [𝑇 ] ∩ 𝐻𝑌 𝑃 = ∅

(4) requires an infinite injury argument and yields that 𝒜 codes 𝑄 ≅0″ 𝑇.

9



Results of Turetsky

Theorem (Turetsky ’20)
(1) There is a computable structure 𝒜1 that has degree of categoricity 0 but high Scott rank.
(2) There is a computable structure 𝒜2 without degree of categoricity and computable

dimension 2.

A structure 𝒜 has computable dimension 𝑛 ∈ (𝜔 ∪ {𝜔}) if it has 𝑛 computable copies up to
computable isomorphism.

𝒜2 is obtained from 𝒜1 by a simple trick.

Idea to obtain 𝒜1 :

(1) Given a computable tree 𝑇 build a computable structure 𝒜 such that 𝑎𝑢𝑡(𝒜) − 𝑖𝑑 ≡𝑤 [𝑇 ]

(2) Force 𝒜 to have degree of categoricity 0

(3) Take 𝑇 such that [𝑇 ] ∩ 𝐻𝑌 𝑃 = ∅

(4) requires an infinite injury argument and yields that 𝒜 codes 𝑄 ≅0″ 𝑇.

9



Getting rid of 0″

Turetsky produces:

1. 𝒜1 such that 𝑎𝑢𝑡(𝒜1) − 𝑖𝑑 ≡𝑤 [𝑄] and {𝑓 ⊕ ∅″ ∶ 𝑓 ∈ [𝑄]} ≡𝑤 {𝑓 ⊕ ∅″ ∶ 𝑓 ∈ [𝑇 ]}
2. 𝒜2 ≅ 𝒢 ≅ ℬ such that {𝑓 ∶ (𝑓 ∶ 𝒢 ≅ ℬ)} ≡𝑤 [𝑄]

If we were able to get rid of the 0″ , then we would get that every treeable degree is a degree of
categoricity using the structures 𝒜2 .

This seems to be difficult:

• All natural structures have computable dimension 1 and 𝜔.
• Producing something with finite computable dimension seems to rely on infinite injury.
• (Goncharov) If a structure has degree of categoricity less than 0′ , then it has computable
dimension 1 or 𝜔.
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We can add the following to Turetsky’s construction:

2. Force 𝒜 to have degree of categoricity 0 (This forces 𝒜 to code 𝑄)
2a. For every 𝑓 ∈ [𝑄] 𝑓 ≥𝑇 ∅″ .

Then {𝑓 ∶ 𝑓 ∶ 𝒢 ≅ ℬ} ≡𝑤 [𝑄] ≡𝑤 {𝑓 ⊕ ∅″ ∶ 𝑓 ∈ [𝑄]} ≡𝑤 {𝑓 ⊕ ∅″ ∶ 𝑓 ∈ [𝑇 ]}.

Theorem (Csima, R.)
Every treeable degree d such that d ≥𝑇 0″ is the degree of categoricity of a structure.

Theorem (Csima, R.)
Every degree of categoricity above 0″ is strong.

Congrats to this abstract characterization, is this actually useful?
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Π0
1 function singletons

𝑓 ∈ 𝜔𝜔 is a (Π0
1) function singleton if there is a computable tree 𝑇 with [𝑇 ] = {𝑓}.

Observation: The degree of every function singleton above 0″ is the degree of categoricity of a
rigid structure of comp. dimension 2.

The following degrees are degrees of function singletons:

• (folklore) For all computable ordinals 𝛼, 0(𝛼) is the degree of a function singleton.
• (Jockusch, MacLaughlin ’69) If d contains a function singleton, then so does every c with

d ≤ c ≤ d′ .
• (Harrington ’76) There is a non-arithmetical function singleton ℎ such that ℎ(𝑛) ≱ 0(𝜔) for
all 𝑛 ∈ 𝜔.

12



Corollary

(1) For every computable 𝛼 ≥ 2, every degree d ∈ [0(𝛼), 0(𝛼+1)] is a degree of categoricity.
(2) There is a degree d such that for every 𝑛 ∈ 𝜔, c ∈ [d(𝑛), d(𝑛+1)] is a non-arithmetic

degree of categoricity.

Proposition (Csima, R.)

Every degree d ∈ [0′, 0″] is a degree of categoricity.

13



Some more thoughts on eliminating 0″

Eliminating 0″ could be possible but will require new techniques:

1. (Goncharov) If a structure has degree of categoricity less than 0′ , then it has computable
dimension 1 or 𝜔.

2. (Bazhenov, Yamaleev) There is a d-c.e. degree that is not the degree of categoricity of a rigid
structure.

Theorem (Csima, R.)
There is a degree d ∈ (0′, 0″) that is not the degree of categoricity of a rigid structure.

We do not even know whether every function singleton is the degree of categoricity of a structure.
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Reasons to be positive

A degree d is low for isomorphism if whenever d ≥𝑇 𝑓 ∶ 𝒜1 ≅ ℬ1 for 𝒜1, ℬ1 computable,
then they are computably isomorphic. (Franklin, Solomon ’14)

A degree d is low for paths through Baire space if whenever d ≥𝑇 𝑓 ∈ [𝑇 ] for 𝑇 in 𝜔𝜔

computable, then 𝑇 has a computable path.

Theorem (Franklin, Turetsky ’19)
A degree d is low for isomorphism if and only if it is low for paths.

All known(⋆) examples of hyperarithmetic degrees that are not degrees of categoricity are low for
isomorphism. Thus, no known examples can be used to separate treeable degrees from degrees
of categoricity.
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Reasons to be positive

A degree d is low for isomorphism if whenever d ≥𝑇 𝑓 ∶ 𝒜1 ≅ ℬ1 for 𝒜1, ℬ1 computable,
then they are computably isomorphic. (Franklin, Solomon ’14)

A degree d is low for paths through Baire space if whenever d ≥𝑇 𝑓 ∈ [𝑇 ] for 𝑇 in 𝜔𝜔

computable, then 𝑇 has a computable path.

Theorem (Franklin, Turetsky ’19)
A degree d is low for isomorphism if and only if it is low for paths.

All known(⋆) examples of hyperarithmetic degrees that are not degrees of categoricity are low for
isomorphism. Thus, no known examples can be used to separate treeable degrees from degrees
of categoricity.
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