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Our goal is to prove the following theorem about coanalytic equivalence relations due to
Silver.

Theorem 1 (Silver). Suppose X is a Polish space and E is a ΠΠΠ1
1 equivalence relation on X.

Then either E has countably many equivalence classes or a perfect set of pairwise inequivalent
elements.

We will prove the effective version of the Theorem. The boldface version follows by relativizing.
It will be convenient to assume that X = ωω. The proof we give is a forcing proof due to
Harrington. The presentation follows Arnold Miller’s “Descriptive Set Theory and Forcing”.
The forcing used is often referred to as Gandy forcing or Gandy-Harrington forcing. Our
forcing notion P consists of the non-empty ΣΣΣ1

1 subsets of ωω ordered by inclusion.

Let us first prove a general observation about Gandy forcing. Gandy forcing was first used
by Gandy in the proof his Basis Theorem and later refined by Harrington. Of course, in the
original application it was not written in forcing language but as a classical construction of
a real in ω many steps. After all, Gandy proved his basis theorem before Cohen invented
the forcing method. In forcing one often refers to generic reals. This is warranted as the
following lemma says.

Lemma 2. Let G be a P-generic filter, then there exists a ∈ ωω such that G = {p ∈ P : a ∈ p}
and {a} =

⋂
G.

Proof. Given s ∈ ωn let [s] = {x ∈ ωω : x ⊃ s}, then [s] is clearly Σ1
1 and for every

forcing condition p and every n, there is [s] compatible with p. However, if s and t are two
incompatible strings in ω<ω and [s] ∈ G, then [t] ̸∈ G. Thus there is a unique a ∈ ωω with
[a ↾n] ∈ G for each n and clearly,

⋂
G ⊆ {a}. Also note that G ⊆ {p ∈ P : a ∈ p}.

Now, let B ∈ G, we need to show that a ∈ B. As B is Σ1
1 it is defined by a formula of the

form
x ∈ B ⇔ ∃(y ∈ ωω)∀nθ(x ↾n, y ↾n, n)

where θ is a recursive predicate. We can associate to θ a tree T in ωω × ωω such that
B = {x : ∃y⟨y, x⟩ ∈ [T ]}.

We show that a ∈ B by induction. Let [T y ↾ n,a ↾ n] = [T ] ∩ [⟨y ↾n, a ↾n⟩] and p[T y ↾ n,a ↾ n] be
its right projection. Assume that p[T y ↾ n,a ↾ n] ∈ G. First, e that

p[T y ↾ n,a ↾ n+1] = [a ↾n + 1] ∩ p[T y ↾ n,a ↾ n]
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and as the two latter sets are in G, p[T y ↾ n,a ↾ n+1] ∈ G. Notice that

p[T y ↾ n,a ↾ n+1] ∈ G =
⋃

k∈ω

p[T (x ↾ n)⌢k,a ↾ n+1]

The set {q : ∃kp[T (x ↾ n)⌢k,a ↾ n+1] ∩ q ̸= ∅} is dense below p[T x ↾ n,a ↾ n] and thus for some k,
p[T (x ↾ n)⌢k,a ↾ n+1] ∈ G. Let x ↾n + 1 = (x ↾n)⌢k. So ⟨x, a⟩ ∈ [T ] and thus a ∈ B. Hence,⋂

G = {a}.

At last we need to verify that G ⊇ {p ∈ P : a ∈ p}. Towards a contradiction assume there
is p ̸∈ G with a ∈ p. As the set {q ∈ P : q ≤ p ∨ q ∩ p = ∅} is dense there must be q ∈ G
disjoint from p. But as for every q ∈ G, a ∈ q, p ∩ q ̸= ∅, a contradiction.

Lemma 3. Say a is P-generic and a = ⟨a0, a1⟩, then a0 and a1 are both P-generic.

Proof. Suppose D ⊆ P is dense open and let

E = {p ∈ P : {x0 : x ∈ p} ∈ D}.

We claim that E is dense. For arbitrary q ∈ P let q0 = {x0 : x ∈ q}, e that q0 ∈ P as it is
Σ1

1 and non-empty. As D is dense there is r0 ≤ q0 with r0 ∈ D. Let r = {x ∈ q : x0 ∈ r0}.
Then r ∈ E and r ≤ q, so E is dense. Thus, there is p ∈ E with a ∈ p and hence
a0 ∈ p0 = {x0 : x ∈ p} ∈ D. Thus a0 is generic. The proof for a1 is symmetric.

Theorem 4 (Π1
1 reduction). Let A0 and A1 be Π1

1 sets, then there exist disjoint Π1
1 sets

Bi ⊆ Ai such that A0 ∪ A1 = B0 ∪ B1.

Proof. As the Ai are Π1
1, there are recursive functions pAi , taking x → T i,x such that x ∈ Ai

if and only if Ti,x is well founded. Construct the sets Bi as follows:

1. x ∈ B0 iff x ∈ A0 and T1,x ̸≺ T0,x

2. x ∈ B1 iff x ∈ A1 and T0,x ̸⪯ T1,x

Then the Bi ⊆ Ai are Π1
1 as ⪯ and ≺ are Σ1

1. If x ∈ A0 and x ̸∈ A1, then x ∈∈ B0, as T1,x

is ill-founded and T0,x is well-founded. Similarly if x ∈ A1 and not in A0. On the other hand
if x ∈ A0 ∩ A1, then either T0,x ⪯ T1,x or T1,x ≺ T0,x. In either case x is in at most one of
the Bi.

Corollary 5 (Σ1
1 separation). Suppose A, B ⊆ ωω are disjoint Σ1

1. Then there exists a ∆1
1

separator for A and B, i.e., a ∆1
1 set C such that A ⊆ C and C ∩ B = ∅.

Proof. As A, B are disjoint Ac ∪ Bc = ωω. Let A0 and B0 be Π1
1 sets reducing Ac, Bc,

then Ac
0 = B0, so they are ∆1

1. Let C = B0, then C ⊇ A. But also C ⊆ Bc and thus
C ∩ B = ∅.

Lemma 6. Suppose B ⊆ ωω is Σ1
1 and for every x, y ∈ B xEy. Then there exists ∆1

1 D ⊇ B
such that for all x, y ∈ D, xEy.
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Proof. Let A = {x ∈ ωω : ∀yy ∈ B → xEy}. Then A is Π1
1 and A ⊇ B. Thus B ∩ Ac = ∅

and hence by Σ1
1 separation there is ∆1

1 C separating B and Ac. We have that B ⊆ C ⊆ A
and by transitivity of E, all elements of C are E equivalent.

Theorem 7. There are Π1
1 sets P +, P − ⊆ ω × x and D ⊆ ω such that

1. for any n ∈ D, P +
n = (P −

n )c,

2. and for any ∆1
1 set A there is n ∈ D such that A = P +

n .

Proof. Let P ⊆ ω × ωω be a universal Π1
1 set and define

Q+(⟨m, k⟩, x) ⇔ P (m, x)
Q−(⟨m, k⟩x) ⇔ P (k, x)

Then Q+ and Q− are Π1
1. By Π1

1 reduction let P + and P − be disjoint Π1
1 subsets such that

P + ∪ P − = Q+ ∪ Q−. Define

n ∈ D ⇔ P +
n ∪ P −

n = X

Then D is Π1
1 and the properties 1 and 2 are satisfied.

We now come to the heart of Harrington’s proof. Define

H = {x ∈ ωω : for no ∆1
1U s.t. x ∈ U, U ⊆ [x]E}.

First assume that H = ∅, then every equivalence class contains a ∆1
1 set. As there are only

countably many ∆1
1 sets, this implies that E contains only countably many equivalence

classes. We proceed to show that if H ̸= ∅, then E has perfectly many equivalence classes.

Note that H is Σ1
1 as we have

x ∈ H ⇔ ∀U ∈ ∆1
1(x ∈ U → ∃y(y ∈ U ∧ ¬xEy))

and can rewrite this as:

x ∈ H ⇔ ∀n((n ∈ D ∧ x ∈ P +
n ) → ∃y(y ̸∈ P −

n ∧ ¬xEy)).

Lemma 8. Suppose c ∈ ωω. Then H ⊩ ¬čEȧ.

Proof. Assume the contrary , and let C ⊆ H such that C ⊩ cEa. There must be two reals
c0, c1 ∈ C such that ¬c0Ec1, otherwise we would have that there is a ∆1

1 superset of C that
meets only one equivalence class. But these are disjoint from H. Let

Q = {c : c0 ∈ C, c1 ∈ C, & ¬c0Ec1}

and let a ∈ Q be generic. Then both a0 and a1 are generic, ¬a0Ea1, a0, a1 ∈ C. But
then a0Ec, a1Ec and ¬a0Ea1 and as being an equivalence relation is absolute we obtain a
contradiction.
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Notice that the above lemma implies that if (a0, a1) is P × P generic over V and a1 ∈ H,
then ¬a0Ea1 as a1 is P-generic over V [a0]. To finish the proof it remains to show that there
is a perfect set of product generics.

Lemma 9. Suppose M is a countable transitive model of ZFC and P is partially ordered
in M . Then there exists {G : x ∈ 2ω}, a perfect set of P-filters, such that for every x ̸= y,
(Gx, Gy) is P × P-generic over M .

Proof. Let Dn list all dense open subsets of P × P in M and construct ⟨ps : s ∈ 2<ω⟩ by
induction on the length of s so that

1. s ⊆ t implies pt ≤ ps and

2. |s| = |t| = n + 1 and s and t are distinct, then (ps, pt) ∈ Dn. Define for any x ∈ 2ω

Gx = {p ∈ P : ∃npx ↾ n ≤ p}.

To finish the proof let M be a countable transitive set isomorphic to an elementary sub-
structure of Vκ for some sufficiently large κ. Let {Gx : x ∈ 2ω} be the generic filter given by
the above lemma and let P = {ax : x ∈ 2ω} be the corresponding generic reals. By Lemma
?? we have that for x ̸= y ∈ 2ω, ax Eay. Furthermore P is perfect, as the map x → ax is
continuous. This is because for any n ∈ ω there exists m < ω such that every ps with s ∈ 2m

decides a ↾n.

Corollary 10. Every Σ1
1 set containing a non-∆1

1 real contains a perfect subset.

Proof. Let A ⊆ ωω be a Σ1
1 set. Define xEy iff x, y ̸∈ A or x = y. Then E is Π1

1. As A
contains a real that is not ∆1

1, H is non-empty, so there is a perfect set P of non-equivalent
elements which is a subset of A.

Corollary 11. Every uncountable ΣΣΣ1
1 set contains a perfect subset.

Analytic equivalence relations
What about analytic equivalence relations? Unfortunately, the Silver dichotomy fails for
analytic equivalence relations. Consider the following example:

x ∼ y ⇔ ∃f : x ∼= y ∨ x, y ̸∈ WO

Then ∼ contains isomorphism classes of well orders and one class containing all non-well
ordered reals.

Lemma 12 (ΣΣΣ1
1 boundedness). If A ⊆ WO is ΣΣΣ1

1, then there is α such that A ⊆ WO<α.

Proof. Assume not, then
x ∈ WO ⇔ ∃(y ∈ A)x ↪→ y

and thus WO would be ΣΣΣ1
1, a contradiction.
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So if X was a perfect subset of non-equivalent elements, then it would be ΣΣΣ1
1 and so would be

X ∩ WO which is off by at most 1 in size of X. Then, by the lemma, X would be countable,
a contradiction.

One dichotomy for ΣΣΣ1
1 equivalence relation is due to Burgess.

Theorem 13. Let E be a ΣΣΣ1
1 equivalence relation. Then there are Borel equivalence relations

Eα for α ≤ ω1 such that E =
⋂

α<ω1
Eα.

Proof idea. Assume that E is ΣΣΣ1
1, then there is a continuous map (x, y) 7→ Txy such that

xEy ⇔ Txy ̸∈ WF

Let xEαy if and only if Txy has rank greater than α. Eα is Borel but not an equivalence
relation for all α. The theorem is proven by showing that there exists a club C such that
every relation in {Eα : α ∈ C} is an equivalence relation.

A corollary of this theorem is that E has either a perfect set of non-equivalent elements or
≤ ω1 many equivalence classes.
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