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In this note we will prove several equivalent conditions for a countable equivalence relation on a standard
Borel space to be hyperfinite. These equivalences first appeared in [1].

Theorem 1. Suppose E is a countable Borel equivalence relation on a standard Borel space X. Then the
following are equivalent.

1. E is hyperfinite, i.e., E =J E,, with E, C E,+1 and each E,, finite.
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2. E is hyperfinite witnessed by (Ep)nen with |[z]g,| < n for alln e N and x € X.

3. ECp Fy

4. E is generated by a Z action, i.c., there is a Borel function f: X — X such that tEy <= In f*(z) =
yVvr=y.

5. There is a Borel assignment [x] — <[y such that <{z)— Z. Furthermore, if [x] is infinite, then <;=Z.

The equivalence between (3) and (1) is due to Slaman and Steel [2], the equivalence between (1) and (2) is
due to Weiss [3] and the others are due to Dougherty, Kechris and Louveau [1].

Before we proceed with the proof of the above theorem recall the Feldman-Moore theorem.

Theorem 2 (Feldman-Moore). Let E be a countable equivalence relation on a standard Borel space X, then
E is induced by the Borel action of a countable group on X, i.e., E = E)Cé

Fix a Borel ordering <x on X and say that E is a finite equivalence relation. Then the Feldman-Moore
theorem allows us to find largest, and smallest elements in the equivalence classes and the sizes of the
equivalence classes in a Borel way. It also implies that finite equivalence relations are smooth.

Theorem 3 (Luzin-Novikov). Let X,Y be standard Borel spaces and P C X x Y be Borel. Suppose that
every section P, = {y € Y : (z,y) € P} is countable. Then projx(P) ={z € X : 3y € Y)(z,y) € P}
is Borel, and P has a Borel uniformization. ILe., there is a Borel function f : Projx(P) — Y such that
(z, f(z)) € P for any z € projx(P).
Lemma 4. Let E, F be countable Borel equivalence relations on standard Borel spaces X and 'Y respectively.

1. If X =Y, F is hyperfinite and E C F then E is hyperfinite.

2. If E is hyperfinite, and A C X is Borel, then E | A is hyperfinite.

3. If AC X is Borel, [Alp = X and E | A is hyperfinite, then E is hyperfinite.

4. If E < F and F is hyperfinite, then E is hyperfinite.

5. If both E and F are hyperfinite, then E X F' is hyperfinite.

Proof. (1),(2), and (5) are obvious. For (3), let the hyperfiniteness of E on A be witnessed by (F},), take
G = {gm : m € N} such that E = E, and let m(x) be least m such that g, - € A for z € X. Define

zEny <~ (m(m), m<y) <NA Gm(z) - angm(y) : y) Vo=y.

The E, are finite equivalence relations, £, C E,; and E = J,, E,. Thus E is hyperfinite.

For (4),let f: E <p F. Then f(x) = f(y), implies xFy and as f is countable to one, {((z,z) : f(z) = 2}
satisfies the conditions for the Luzin-Novikov theorem. So, there is an injective Borel function g : f(X) — X
such that fog = id. In particular g(f(X)) is Borel, and [g(f(X))]r = X. As E [ g(f(X)) is Borel isomorphic



to F'| f(X) we get by (2) that F'| f(X) is hyperfinite. Hence, also E [ g(f(X)) is hyperfinite and thus by (3)
E. O

This lemma shows (3) implies (1) and in particular implies that any smooth equivalence relation is hyperfinite
(Say f witnesses smoothness, then modify f to map to the set of initial segments of f(z) for every z).

Proof of (4) implies (5). 1If [z] is infinite, define < on [z] by letting = < y iff Inf™(z) = y. Otherwise define
< using some fixed Borel ordering on X. O

Proof of (5) implies (4). Define f by

o) = suce(x) if suce(x) |
i) {(uy € [z])pre(y) T otherwise

O

Proof of (1) implies (5). Given xEy with « # y let ng, = maxm[-2E,,y| and for every n define z <,, y if
the < x-least element of [z]g, is <x below the <, -least element of [y]g, . Let

n

v<y <= v#yANzEyAlalp,,, <n., Ve

nzy

We just need to observe that < is discrete: Consider an interval [z,y]. If zEz and 2 & ([z]g,,, U [Y]E,,, )
then z <,,,,  or z >,__ x. The first case immediately implies that z < x and in the other case if n,, = ngy
then z might be in [z,y] but there are only finitely many such candidates or n,, > ny, in which case z > y.
Thus [x,y] is finite. We can easily modify any order of order type w or w* to have order type Z. O

In order to proof that (5) implies (1) we need the following lemma due to Slaman and Steel which is interesting
in its own right.

Lemma 5 (Marker lemma). Every countable Borel equivalence relation E without finite classes admits a
vanishing sequence of markers, i.e., a sequence of Borel sets So 2 Sy ... such that [Sy|g = E for all n and

NS, = 0.

Proof. Assume without loss of generality that X = 2% and let s, (z) = ps € 2™[|[z]g N [s]| = oo] and let
x €A, < z|n=s,(x). The sequence (A, )nen is clearly decreasing and meets every equivalence class of
E. Furthermore (A, N[z]g <1 for all z. Let S,, = A, \ () A4n- O

Proof of (5) implies (1). Given a countable Borel equivalence relation E, note that the subequivalence
relation Er;p = {(z,y) : tEy A (x = y V [z] is finite} is Borel. Hence, we may assume that E does not contain
finite equivalence relations. Let (S, )nen be a vanishing sequence of markers for E and let Xgpmo0tn be the set
of all z such that for some n, [£] NS, has either a least or a greatest element. Then Xgmootn is a Borel subset
of X and Esmooth = F | Xsmooth U Id is a smooth subequivalence of E witnessed by the function mapping x
to the least or greatest element in [x] N S,, such that a least or greatest element exists. For E on X \ Xsmooth
define
2By <= x=yV (zEyAlz,y]N S, =0).

Clearly, E,, C E,,11 and E = |J E,, and each E,, is finite. As a finite union of hyperfinite equivalence relations
is hyperfinite, we have that E is hyperfinite. O
At last let us proof that (2) implies (3). This proof is essentially due to Hjorth, see also [4].

Proof of (1) implies (3). Say (Fy,)new is a hyperfinite witness for E with Fy the identity. We will reduce E
to Ep(w) the eventual equality relation on w“. Given n, let [z|r, = {yg,...,yp } where yg <--- <y ina
fixed Borel ordering of X and fix a bijection 7 : w<* — w. We construct a map f : X — w® as follows.



L f(2)(0) = (z[0=yg [0,7(0))
2. forn > 1,

f@)(n) = (v Tyt In, -y, T, 7(i(n, 0),0(n, 1), .oy i(n, kn1))

where i(n, j) is chosen such that y?_l

We have that if ©Ey, then «F,y for all large enough n and hence f(z)Eof(y).

= y:L(n]) for aH] S k‘n_l.

To see the backwards direction assume that for given z,y € X and n € N, Ym > n f(x)(m) = f(y)(m). For
all m > n, let

f(x)(m) = (sq',...55 ,m(i(m,0),...,0(m, kpn_1))).
For any j < k,, define J : N>, — N by
J(m) = {j m=n

i(m,J(m —1)) m>n+1"

By the definitions of f and J, we have that sT(m) C 53’1(';1“). Thus, y7 = Umz” ST(m) and hence, since
Fy = id we have that =F,y and so zEy.
Notice, that since Fy =id, £ Cp FEj. O

Proof of (1) implies (2). Let (F),) witness the hyperfiniteness of E and assume wlog that Fy = id. For each
n let

X, ={z e X :|z]r,| <n}
Xi={eg¢ |J X;:lla]rl <n}

i<j<n

Note that since Xg = id, Xg = X — U0<j§n X; and that all X; are Fj invariant for j < i. Let E, =
U;<n Fi 1 X, then every E, orbit has at most n elements. To see that E,, C E,41 let Y,41,...,Y0, be
the sequence of sets defined in the definition of E, ;1. Say zFE,y, then there is i < n with zF;y. Since
X; C Y,y U... Y, there is j >4 with x,y € Y¥; and hence xE,,1y. To see that F = J En, just note that if
xF;y, since very orbit in F; is finite, it will get added eventually to some E,,.

O
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