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In this note we will prove several equivalent conditions for a countable equivalence relation on a standard
Borel space to be hyperfinite. These equivalences first appeared in [1].

Theorem 1. Suppose E is a countable Borel equivalence relation on a standard Borel space X. Then the
following are equivalent.

1. E is hyperfinite, i.e., E =
⋃

n∈N En with En ⊆ En+1 and each En finite.
2. E is hyperfinite witnessed by (En)n∈N with |[x]En

| ≤ n for all n ∈ N and x ∈ X.
3. E ⊑B E0
4. E is generated by a Z action, i.e., there is a Borel function f : X → X such that xEy ⇐⇒ ∃n fn(x) =

y ∨ x = y.
5. There is a Borel assignment [x] →<[x] such that <[x]↪→ Z. Furthermore, if [x] is infinite, then <[x]∼= Z.

The equivalence between (3) and (1) is due to Slaman and Steel [2], the equivalence between (1) and (2) is
due to Weiss [3] and the others are due to Dougherty, Kechris and Louveau [1].

Before we proceed with the proof of the above theorem recall the Feldman-Moore theorem.

Theorem 2 (Feldman-Moore). Let E be a countable equivalence relation on a standard Borel space X, then
E is induced by the Borel action of a countable group on X, i.e., E = EG

X .

Fix a Borel ordering <X on X and say that E is a finite equivalence relation. Then the Feldman-Moore
theorem allows us to find largest, and smallest elements in the equivalence classes and the sizes of the
equivalence classes in a Borel way. It also implies that finite equivalence relations are smooth.

Theorem 3 (Luzin-Novikov). Let X, Y be standard Borel spaces and P ⊆ X × Y be Borel. Suppose that
every section Px = {y ∈ Y : (x, y) ∈ P} is countable. Then projX(P ) = {x ∈ X : (∃y ∈ Y )(x, y) ∈ P}
is Borel, and P has a Borel uniformization. I.e., there is a Borel function f : ProjX(P ) → Y such that
(x, f(x)) ∈ P for any x ∈ projX(P ).

Lemma 4. Let E, F be countable Borel equivalence relations on standard Borel spaces X and Y respectively.

1. If X = Y , F is hyperfinite and E ⊆ F then E is hyperfinite.
2. If E is hyperfinite, and A ⊆ X is Borel, then E ↾A is hyperfinite.
3. If A ⊆ X is Borel, [A]E = X and E ↾A is hyperfinite, then E is hyperfinite.
4. If E ≤B F and F is hyperfinite, then E is hyperfinite.
5. If both E and F are hyperfinite, then E × F is hyperfinite.

Proof. (1),(2), and (5) are obvious. For (3), let the hyperfiniteness of E on A be witnessed by (Fn), take
G = {gm : m ∈ N} such that E = EG

X , and let m(x) be least m such that gm · x ∈ A for x ∈ X. Define

xEny ⇐⇒ (m(x), m(y) < n ∧ gm(x) · xFngm(y) · y) ∨ x = y.

The En are finite equivalence relations, En ⊆ En+1 and E =
⋃

n En. Thus E is hyperfinite.

For (4), let f : E ≤B F . Then f(x) = f(y), implies xEy and as f is countable to one, {((z, x) : f(x) = z}
satisfies the conditions for the Luzin-Novikov theorem. So, there is an injective Borel function g : f(X) → X
such that f ◦ g = id. In particular g(f(X)) is Borel, and [g(f(X))]E = X. As E ↾ g(f(X)) is Borel isomorphic
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to F ↾ f(X) we get by (2) that F ↾ f(X) is hyperfinite. Hence, also E ↾ g(f(X)) is hyperfinite and thus by (3)
E.

This lemma shows (3) implies (1) and in particular implies that any smooth equivalence relation is hyperfinite
(Say f witnesses smoothness, then modify f to map to the set of initial segments of f(x) for every x).

Proof of (4) implies (5). If [x] is infinite, define < on [x] by letting x < y iff ∃nfn(x) = y. Otherwise define
< using some fixed Borel ordering on X.

Proof of (5) implies (4). Define f by

f(x) =
{

succ(x) if succ(x) ↓
(µy ∈ [x])pre(y) ↑ otherwise

.

Proof of (1) implies (5). Given xEy with x ̸= y let nxy = max m[¬xEmy] and for every n define x <n y if
the <X -least element of [x]En is <X below the <En -least element of [y]En . Let

x < y ⇐⇒ x ̸= y ∧ xEy ∧ [x]Enxy
≤nxy [y]Enxy

.

We just need to observe that < is discrete: Consider an interval [x, y]. If zEx and z ̸∈ ([x]Enxy
∪ [y]Enxy

),
then z <nxz x or z >nxz x. The first case immediately implies that z < x and in the other case if nyz = nxy

then z might be in [x, y] but there are only finitely many such candidates or nyz > nxy in which case z > y.
Thus [x, y] is finite. We can easily modify any order of order type ω or ω∗ to have order type Z.

In order to proof that (5) implies (1) we need the following lemma due to Slaman and Steel which is interesting
in its own right.

Lemma 5 (Marker lemma). Every countable Borel equivalence relation E without finite classes admits a
vanishing sequence of markers, i.e., a sequence of Borel sets S0 ⊇ S1 . . . such that [Sn]E = E for all n and⋂

Sn = ∅.

Proof. Assume without loss of generality that X = 2ω and let sn(x) = µs ∈ 2n[|[x]E ∩ JsK| = ∞] and let
x ∈ An ⇐⇒ x ↾n = sn(x). The sequence (An)n∈N is clearly decreasing and meets every equivalence class of
E. Furthermore

⋂
An ∩ [x]E ≤ 1 for all x. Let Sn = An \

⋂
An.

Proof of (5) implies (1). Given a countable Borel equivalence relation E, note that the subequivalence
relation Efin = {(x, y) : xEy ∧ (x = y ∨ [x] is finite} is Borel. Hence, we may assume that E does not contain
finite equivalence relations. Let (Sn)n∈N be a vanishing sequence of markers for E and let Xsmooth be the set
of all x such that for some n, [x] ∩ Sn has either a least or a greatest element. Then Xsmooth is a Borel subset
of X and Esmooth = E ↾Xsmooth ∪ Id is a smooth subequivalence of E witnessed by the function mapping x
to the least or greatest element in [x] ∩ Sn such that a least or greatest element exists. For E on X \ Xsmooth

define
xEny ⇐⇒ x = y ∨ (xEy ∧ [x, y] ∩ Sn = ∅).

Clearly, En ⊆ En+1 and E =
⋃

En and each En is finite. As a finite union of hyperfinite equivalence relations
is hyperfinite, we have that E is hyperfinite.

At last let us proof that (2) implies (3). This proof is essentially due to Hjorth, see also [4].

Proof of (1) implies (3). Say (Fn)n∈ω is a hyperfinite witness for E with F0 the identity. We will reduce E
to E0(ω) the eventual equality relation on ωω. Given n, let [x]Fn

= {yn
0 , . . . , yn

kn
} where yn

0 < · · · < yn
kn

in a
fixed Borel ordering of X and fix a bijection π : ω<ω → ω. We construct a map f : X → ωω as follows.
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1. f(x)(0) = (x ↾ 0 = y0
0 ↾ 0, π(0))

2. for n ≥ 1,
f(x)(n) = (yn

0 ↾n, yn
1 ↾n, . . . yn

kn
↾n, π(i(n, 0), i(n, 1), . . . , i(n, kn−1)))

where i(n, j) is chosen such that yn−1
j = yn

i(n,j) for all j ≤ kn−1.

We have that if xEy, then xFny for all large enough n and hence f(x)E0f(y).

To see the backwards direction assume that for given x, y ∈ X and n ∈ N, ∀m ≥ n f(x)(m) = f(y)(m). For
all m ≥ n, let

f(x)(m) = (sm
0 , . . . sm

km
, π(i(m, 0), . . . , i(m, km−1))).

For any j < kn define J : N≥n → N by

J(m) =
{

j m=n
i(m, J(m − 1)) m ≥ n + 1

.

By the definitions of f and J , we have that sm
J(m) ⊆ sm+1

J(m+1). Thus, yn
j =

⋃
m≥n sm

J(m) and hence, since
F0 = id we have that xFny and so xEy.

Notice, that since F0 = id, E ⊑B E0.

Proof of (1) implies (2). Let (Fn) witness the hyperfiniteness of E and assume wlog that F0 = id. For each
n let

Xn = {x ∈ X : |[x]Fn | ≤ n}

Xi = {x ̸∈
⋃

i<j≤n

Xj : |[x]Fi
| ≤ n}

Note that since X0 = id, X0 = X −
⋃

0<j≤n Xj and that all Xi are Fj invariant for j ≤ i. Let En =⋃
i≤n Fi ↾Xi, then every En orbit has at most n elements. To see that En ⊆ En+1 let Yn+1, . . . , Y0, be

the sequence of sets defined in the definition of En+1. Say xEny, then there is i ≤ n with xFiy. Since
Xi ⊆ Yn+1 ∪ . . . Yi there is j ≥ i with x, y ∈ Yj and hence xEn+1y. To see that E =

⋃
En, just note that if

xFiy, since very orbit in Fi is finite, it will get added eventually to some En.
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